mirror of
https://github.com/Zenithsiz/ftmemsim-valgrind.git
synced 2026-02-10 05:37:06 +00:00
At various places, there were either some assumption that the 'end'
boundary (highest address) was either not included, included,
or was the highest addressable word, or the highest addressable byte.
This e.g. was very visible when doing:
./vg-in-place -d -d ./helgrind/tests/tc01_simple_race|&grep regi
giving
--24040:2:stacks register 0xBEDB4000-0xBEDB4FFF as stack 0
--24040:2:stacks register 0x402C000-0x4A2C000 as stack 1
showing that the main stack end was (on x86) not the highest word
but the highest byte, while for the thread 1, the registered end
was a byte not part of the stack.
The attached patch ensures that stack bounds semantic are documented and
consistent. Also, some of the stack handling code is factorised.
The convention that the patch ensures and documents is:
start is the lowest addressable byte, end is the highest addressable byte.
(the words 'min' and 'max' have been kept when already used, as this wording is
consistent with the new semantic of start/end).
In various debug log, used brackets [ and ] to make clear that
both bounds are included.
The code to guess and register the client stack was duplicated
in all the platform specific syswrap-<plat>-<os>.c files.
Code has been factorised in syswrap-generic.c
The patch has been regression tested on
x86, amd64, ppc32/64, s390x.
It has been compiled and one test run on arm64.
Not compiled/not tested on darwin, android, mips32/64, arm
More in details, the patch does the following:
coregrind/pub_core_aspacemgr.h
include/valgrind.h
include/pub_tool_machine.h
coregrind/pub_core_scheduler.h
coregrind/pub_core_stacks.h
- document start/end semantic in various functions
also in pub_tool_machine.h:
- replaces unclear 'bottommost address' by 'lowest address'
(unclear as stack bottom is or at least can be interpreted as
the 'functional' bottom of the stack, which is the highest
address for 'stack growing downwards').
coregrind/pub_core_initimg.h
replace unclear clstack_top by clstack_end
coregrind/m_main.c
updated to clstack_end
coregrind/pub_core_threadstate.h
renamed client_stack_highest_word to client_stack_highest_byte
coregrind/m_scheduler/scheduler.c
computes client_stack_highest_byte as the highest addressable byte
Update comments in call to VG_(show_sched_status)
coregrind/m_machine.c
coregrind/m_stacktrace.c
updated to client_stack_highest_byte, and switched
stack_lowest/highest_word to stack_lowest/highest_byte accordingly
coregrind/m_stacks.c
clarify semantic of start/end,
added a comment to indicate why we invert start/end in register call
(note that the code find_stack_by_addr was already assuming that
end was included as the checks were doing e.g.
sp >= i->start && sp <= i->end
coregrind/pub_core_clientstate.h
coregrind/m_clientstate.c
renames Addr VG_(clstk_base) to Addr VG_(clstk_start_base)
(start to indicate it is the lowest address, base suffix kept
to indicate it is the initial lowest address).
coregrind/m_initimg/initimg-darwin.c
updated to VG_(clstk_start_base)
replace unclear iicii.clstack_top by iicii.clstack_end
updated clstack_max_size computation according to both bounds included.
coregrind/m_initimg/initimg-linux.c
updated to VG_(clstk_start_base)
updated VG_(clstk_end) computation according to both bounds included.
replace unclear iicii.clstack_top by iicii.clstack_end
coregrind/pub_core_aspacemgr.h
extern Addr VG_(am_startup) : clarify semantic of the returned value
coregrind/m_aspacemgr/aspacemgr-linux.c
removed a copy of a comment that was already in pub_core_aspacemgr.h
(avoid double maintenance)
renamed unclear suggested_clstack_top to suggested_clstack_end
(note that here, it looks like suggested_clstack_top was already
the last addressable byte)
* factorisation of the stack guessing and registration causes
mechanical changes in the following files:
coregrind/m_syswrap/syswrap-ppc64-linux.c
coregrind/m_syswrap/syswrap-x86-darwin.c
coregrind/m_syswrap/syswrap-amd64-linux.c
coregrind/m_syswrap/syswrap-arm-linux.c
coregrind/m_syswrap/syswrap-generic.c
coregrind/m_syswrap/syswrap-mips64-linux.c
coregrind/m_syswrap/syswrap-ppc32-linux.c
coregrind/m_syswrap/syswrap-amd64-darwin.c
coregrind/m_syswrap/syswrap-mips32-linux.c
coregrind/m_syswrap/priv_syswrap-generic.h
coregrind/m_syswrap/syswrap-x86-linux.c
coregrind/m_syswrap/syswrap-s390x-linux.c
coregrind/m_syswrap/syswrap-darwin.c
coregrind/m_syswrap/syswrap-arm64-linux.c
Some files to look at more in details:
syswrap-darwin.c : the handling of sysctl(kern.usrstack) looked
buggy to me, and has probably be made correct by the fact that
VG_(clstk_end) is now the last addressable byte. However,unsure
about this, as I could not find any documentation about
sysctl(kern.usrstack). I only find several occurences on the web,
showing that the result of this is page aligned, which I guess
means it must be 1+ the last addressable byte.
syswrap-x86-darwin.c and syswrap-amd64-darwin.c
I suspect the code that was computing client_stack_highest_word
was wrong, and the patch makes it correct.
syswrap-mips64-linux.c
not sure what to do for this code. This is the only code
that was guessing the stack differently from others.
Kept (almost) untouched. To be discussed with mips maintainers.
coregrind/pub_core_libcassert.h
coregrind/m_libcassert.c
* void VG_(show_sched_status):
renamed Bool valgrind_stack_usage to Bool stack_usage
if stack_usage, shows both the valgrind stack usage and
the client stack boundaries
coregrind/m_scheduler/scheduler.c
coregrind/m_gdbserver/server.c
coregrind/m_gdbserver/remote-utils.c
Updated comments in callers to VG_(show_sched_status)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14392
1841 lines
68 KiB
C
1841 lines
68 KiB
C
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- Platform-specific syscalls stuff. syswrap-x86-linux.c ---*/
|
|
/*--------------------------------------------------------------------*/
|
|
|
|
/*
|
|
This file is part of Valgrind, a dynamic binary instrumentation
|
|
framework.
|
|
|
|
Copyright (C) 2000-2013 Nicholas Nethercote
|
|
njn@valgrind.org
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307, USA.
|
|
|
|
The GNU General Public License is contained in the file COPYING.
|
|
*/
|
|
|
|
#if defined(VGP_x86_linux)
|
|
|
|
/* TODO/FIXME jrs 20050207: assignments to the syscall return result
|
|
in interrupted_syscall() need to be reviewed. They don't seem
|
|
to assign the shadow state.
|
|
*/
|
|
|
|
#include "pub_core_basics.h"
|
|
#include "pub_core_vki.h"
|
|
#include "pub_core_vkiscnums.h"
|
|
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
|
|
#include "pub_core_threadstate.h"
|
|
#include "pub_core_aspacemgr.h"
|
|
#include "pub_core_debuglog.h"
|
|
#include "pub_core_libcbase.h"
|
|
#include "pub_core_libcassert.h"
|
|
#include "pub_core_libcprint.h"
|
|
#include "pub_core_libcproc.h"
|
|
#include "pub_core_libcsignal.h"
|
|
#include "pub_core_mallocfree.h"
|
|
#include "pub_core_options.h"
|
|
#include "pub_core_scheduler.h"
|
|
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
|
|
#include "pub_core_signals.h"
|
|
#include "pub_core_syscall.h"
|
|
#include "pub_core_syswrap.h"
|
|
#include "pub_core_tooliface.h"
|
|
#include "pub_core_stacks.h" // VG_(register_stack)
|
|
|
|
#include "priv_types_n_macros.h"
|
|
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
|
|
#include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */
|
|
#include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */
|
|
#include "priv_syswrap-main.h"
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
clone() handling
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Call f(arg1), but first switch stacks, using 'stack' as the new
|
|
stack, and use 'retaddr' as f's return-to address. Also, clear all
|
|
the integer registers before entering f.*/
|
|
__attribute__((noreturn))
|
|
void ML_(call_on_new_stack_0_1) ( Addr stack,
|
|
Addr retaddr,
|
|
void (*f)(Word),
|
|
Word arg1 );
|
|
// 4(%esp) == stack
|
|
// 8(%esp) == retaddr
|
|
// 12(%esp) == f
|
|
// 16(%esp) == arg1
|
|
asm(
|
|
".text\n"
|
|
".globl vgModuleLocal_call_on_new_stack_0_1\n"
|
|
"vgModuleLocal_call_on_new_stack_0_1:\n"
|
|
" movl %esp, %esi\n" // remember old stack pointer
|
|
" movl 4(%esi), %esp\n" // set stack
|
|
" pushl 16(%esi)\n" // arg1 to stack
|
|
" pushl 8(%esi)\n" // retaddr to stack
|
|
" pushl 12(%esi)\n" // f to stack
|
|
" movl $0, %eax\n" // zero all GP regs
|
|
" movl $0, %ebx\n"
|
|
" movl $0, %ecx\n"
|
|
" movl $0, %edx\n"
|
|
" movl $0, %esi\n"
|
|
" movl $0, %edi\n"
|
|
" movl $0, %ebp\n"
|
|
" ret\n" // jump to f
|
|
" ud2\n" // should never get here
|
|
".previous\n"
|
|
);
|
|
|
|
|
|
/*
|
|
Perform a clone system call. clone is strange because it has
|
|
fork()-like return-twice semantics, so it needs special
|
|
handling here.
|
|
|
|
Upon entry, we have:
|
|
|
|
int (fn)(void*) in 0+FSZ(%esp)
|
|
void* child_stack in 4+FSZ(%esp)
|
|
int flags in 8+FSZ(%esp)
|
|
void* arg in 12+FSZ(%esp)
|
|
pid_t* child_tid in 16+FSZ(%esp)
|
|
pid_t* parent_tid in 20+FSZ(%esp)
|
|
void* tls_ptr in 24+FSZ(%esp)
|
|
|
|
System call requires:
|
|
|
|
int $__NR_clone in %eax
|
|
int flags in %ebx
|
|
void* child_stack in %ecx
|
|
pid_t* parent_tid in %edx
|
|
pid_t* child_tid in %edi
|
|
void* tls_ptr in %esi
|
|
|
|
Returns an Int encoded in the linux-x86 way, not a SysRes.
|
|
*/
|
|
#define FSZ "4+4+4+4" /* frame size = retaddr+ebx+edi+esi */
|
|
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
|
|
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
|
|
|
|
extern
|
|
Int do_syscall_clone_x86_linux ( Word (*fn)(void *),
|
|
void* stack,
|
|
Int flags,
|
|
void* arg,
|
|
Int* child_tid,
|
|
Int* parent_tid,
|
|
vki_modify_ldt_t * );
|
|
asm(
|
|
".text\n"
|
|
".globl do_syscall_clone_x86_linux\n"
|
|
"do_syscall_clone_x86_linux:\n"
|
|
" push %ebx\n"
|
|
" push %edi\n"
|
|
" push %esi\n"
|
|
|
|
/* set up child stack with function and arg */
|
|
" movl 4+"FSZ"(%esp), %ecx\n" /* syscall arg2: child stack */
|
|
" movl 12+"FSZ"(%esp), %ebx\n" /* fn arg */
|
|
" movl 0+"FSZ"(%esp), %eax\n" /* fn */
|
|
" lea -8(%ecx), %ecx\n" /* make space on stack */
|
|
" movl %ebx, 4(%ecx)\n" /* fn arg */
|
|
" movl %eax, 0(%ecx)\n" /* fn */
|
|
|
|
/* get other args to clone */
|
|
" movl 8+"FSZ"(%esp), %ebx\n" /* syscall arg1: flags */
|
|
" movl 20+"FSZ"(%esp), %edx\n" /* syscall arg3: parent tid * */
|
|
" movl 16+"FSZ"(%esp), %edi\n" /* syscall arg5: child tid * */
|
|
" movl 24+"FSZ"(%esp), %esi\n" /* syscall arg4: tls_ptr * */
|
|
" movl $"__NR_CLONE", %eax\n"
|
|
" int $0x80\n" /* clone() */
|
|
" testl %eax, %eax\n" /* child if retval == 0 */
|
|
" jnz 1f\n"
|
|
|
|
/* CHILD - call thread function */
|
|
" popl %eax\n"
|
|
" call *%eax\n" /* call fn */
|
|
|
|
/* exit with result */
|
|
" movl %eax, %ebx\n" /* arg1: return value from fn */
|
|
" movl $"__NR_EXIT", %eax\n"
|
|
" int $0x80\n"
|
|
|
|
/* Hm, exit returned */
|
|
" ud2\n"
|
|
|
|
"1:\n" /* PARENT or ERROR */
|
|
" pop %esi\n"
|
|
" pop %edi\n"
|
|
" pop %ebx\n"
|
|
" ret\n"
|
|
".previous\n"
|
|
);
|
|
|
|
#undef FSZ
|
|
#undef __NR_CLONE
|
|
#undef __NR_EXIT
|
|
|
|
|
|
// forward declarations
|
|
static void setup_child ( ThreadArchState*, ThreadArchState*, Bool );
|
|
static SysRes sys_set_thread_area ( ThreadId, vki_modify_ldt_t* );
|
|
|
|
/*
|
|
When a client clones, we need to keep track of the new thread. This means:
|
|
1. allocate a ThreadId+ThreadState+stack for the the thread
|
|
|
|
2. initialize the thread's new VCPU state
|
|
|
|
3. create the thread using the same args as the client requested,
|
|
but using the scheduler entrypoint for EIP, and a separate stack
|
|
for ESP.
|
|
*/
|
|
static SysRes do_clone ( ThreadId ptid,
|
|
UInt flags, Addr esp,
|
|
Int* parent_tidptr,
|
|
Int* child_tidptr,
|
|
vki_modify_ldt_t *tlsinfo)
|
|
{
|
|
static const Bool debug = False;
|
|
|
|
ThreadId ctid = VG_(alloc_ThreadState)();
|
|
ThreadState* ptst = VG_(get_ThreadState)(ptid);
|
|
ThreadState* ctst = VG_(get_ThreadState)(ctid);
|
|
UWord* stack;
|
|
SysRes res;
|
|
Int eax;
|
|
vki_sigset_t blockall, savedmask;
|
|
|
|
VG_(sigfillset)(&blockall);
|
|
|
|
vg_assert(VG_(is_running_thread)(ptid));
|
|
vg_assert(VG_(is_valid_tid)(ctid));
|
|
|
|
stack = (UWord*)ML_(allocstack)(ctid);
|
|
if (stack == NULL) {
|
|
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
|
|
goto out;
|
|
}
|
|
|
|
/* Copy register state
|
|
|
|
Both parent and child return to the same place, and the code
|
|
following the clone syscall works out which is which, so we
|
|
don't need to worry about it.
|
|
|
|
The parent gets the child's new tid returned from clone, but the
|
|
child gets 0.
|
|
|
|
If the clone call specifies a NULL esp for the new thread, then
|
|
it actually gets a copy of the parent's esp.
|
|
*/
|
|
/* Note: the clone call done by the Quadrics Elan3 driver specifies
|
|
clone flags of 0xF00, and it seems to rely on the assumption
|
|
that the child inherits a copy of the parent's GDT.
|
|
setup_child takes care of setting that up. */
|
|
setup_child( &ctst->arch, &ptst->arch, True );
|
|
|
|
/* Make sys_clone appear to have returned Success(0) in the
|
|
child. */
|
|
ctst->arch.vex.guest_EAX = 0;
|
|
|
|
if (esp != 0)
|
|
ctst->arch.vex.guest_ESP = esp;
|
|
|
|
ctst->os_state.parent = ptid;
|
|
|
|
/* inherit signal mask */
|
|
ctst->sig_mask = ptst->sig_mask;
|
|
ctst->tmp_sig_mask = ptst->sig_mask;
|
|
|
|
/* Start the child with its threadgroup being the same as the
|
|
parent's. This is so that any exit_group calls that happen
|
|
after the child is created but before it sets its
|
|
os_state.threadgroup field for real (in thread_wrapper in
|
|
syswrap-linux.c), really kill the new thread. a.k.a this avoids
|
|
a race condition in which the thread is unkillable (via
|
|
exit_group) because its threadgroup is not set. The race window
|
|
is probably only a few hundred or a few thousand cycles long.
|
|
See #226116. */
|
|
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
|
|
|
|
ML_(guess_and_register_stack) (esp, ctst);
|
|
|
|
/* Assume the clone will succeed, and tell any tool that wants to
|
|
know that this thread has come into existence. We cannot defer
|
|
it beyond this point because sys_set_thread_area, just below,
|
|
causes tCheck to assert by making references to the new ThreadId
|
|
if we don't state the new thread exists prior to that point.
|
|
If the clone fails, we'll send out a ll_exit notification for it
|
|
at the out: label below, to clean up. */
|
|
vg_assert(VG_(owns_BigLock_LL)(ptid));
|
|
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
|
|
|
|
if (flags & VKI_CLONE_SETTLS) {
|
|
if (debug)
|
|
VG_(printf)("clone child has SETTLS: tls info at %p: idx=%d "
|
|
"base=%#lx limit=%x; esp=%#x fs=%x gs=%x\n",
|
|
tlsinfo, tlsinfo->entry_number,
|
|
tlsinfo->base_addr, tlsinfo->limit,
|
|
ptst->arch.vex.guest_ESP,
|
|
ctst->arch.vex.guest_FS, ctst->arch.vex.guest_GS);
|
|
res = sys_set_thread_area(ctid, tlsinfo);
|
|
if (sr_isError(res))
|
|
goto out;
|
|
}
|
|
|
|
flags &= ~VKI_CLONE_SETTLS;
|
|
|
|
/* start the thread with everything blocked */
|
|
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
|
|
|
|
/* Create the new thread */
|
|
eax = do_syscall_clone_x86_linux(
|
|
ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid],
|
|
child_tidptr, parent_tidptr, NULL
|
|
);
|
|
res = VG_(mk_SysRes_x86_linux)( eax );
|
|
|
|
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
|
|
|
|
out:
|
|
if (sr_isError(res)) {
|
|
/* clone failed */
|
|
VG_(cleanup_thread)(&ctst->arch);
|
|
ctst->status = VgTs_Empty;
|
|
/* oops. Better tell the tool the thread exited in a hurry :-) */
|
|
VG_TRACK( pre_thread_ll_exit, ctid );
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
LDT/GDT simulation
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Details of the LDT simulation
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
When a program runs natively, the linux kernel allows each *thread*
|
|
in it to have its own LDT. Almost all programs never do this --
|
|
it's wildly unportable, after all -- and so the kernel never
|
|
allocates the structure, which is just as well as an LDT occupies
|
|
64k of memory (8192 entries of size 8 bytes).
|
|
|
|
A thread may choose to modify its LDT entries, by doing the
|
|
__NR_modify_ldt syscall. In such a situation the kernel will then
|
|
allocate an LDT structure for it. Each LDT entry is basically a
|
|
(base, limit) pair. A virtual address in a specific segment is
|
|
translated to a linear address by adding the segment's base value.
|
|
In addition, the virtual address must not exceed the limit value.
|
|
|
|
To use an LDT entry, a thread loads one of the segment registers
|
|
(%cs, %ss, %ds, %es, %fs, %gs) with the index of the LDT entry (0
|
|
.. 8191) it wants to use. In fact, the required value is (index <<
|
|
3) + 7, but that's not important right now. Any normal instruction
|
|
which includes an addressing mode can then be made relative to that
|
|
LDT entry by prefixing the insn with a so-called segment-override
|
|
prefix, a byte which indicates which of the 6 segment registers
|
|
holds the LDT index.
|
|
|
|
Now, a key constraint is that valgrind's address checks operate in
|
|
terms of linear addresses. So we have to explicitly translate
|
|
virtual addrs into linear addrs, and that means doing a complete
|
|
LDT simulation.
|
|
|
|
Calls to modify_ldt are intercepted. For each thread, we maintain
|
|
an LDT (with the same normally-never-allocated optimisation that
|
|
the kernel does). This is updated as expected via calls to
|
|
modify_ldt.
|
|
|
|
When a thread does an amode calculation involving a segment
|
|
override prefix, the relevant LDT entry for the thread is
|
|
consulted. It all works.
|
|
|
|
There is a conceptual problem, which appears when switching back to
|
|
native execution, either temporarily to pass syscalls to the
|
|
kernel, or permanently, when debugging V. Problem at such points
|
|
is that it's pretty pointless to copy the simulated machine's
|
|
segment registers to the real machine, because we'd also need to
|
|
copy the simulated LDT into the real one, and that's prohibitively
|
|
expensive.
|
|
|
|
Fortunately it looks like no syscalls rely on the segment regs or
|
|
LDT being correct, so we can get away with it. Apart from that the
|
|
simulation is pretty straightforward. All 6 segment registers are
|
|
tracked, although only %ds, %es, %fs and %gs are allowed as
|
|
prefixes. Perhaps it could be restricted even more than that -- I
|
|
am not sure what is and isn't allowed in user-mode.
|
|
*/
|
|
|
|
/* Translate a struct modify_ldt_ldt_s to a VexGuestX86SegDescr, using
|
|
the Linux kernel's logic (cut-n-paste of code in
|
|
linux/kernel/ldt.c). */
|
|
|
|
static
|
|
void translate_to_hw_format ( /* IN */ vki_modify_ldt_t* inn,
|
|
/* OUT */ VexGuestX86SegDescr* out,
|
|
Int oldmode )
|
|
{
|
|
UInt entry_1, entry_2;
|
|
vg_assert(8 == sizeof(VexGuestX86SegDescr));
|
|
|
|
if (0)
|
|
VG_(printf)("translate_to_hw_format: base %#lx, limit %d\n",
|
|
inn->base_addr, inn->limit );
|
|
|
|
/* Allow LDTs to be cleared by the user. */
|
|
if (inn->base_addr == 0 && inn->limit == 0) {
|
|
if (oldmode ||
|
|
(inn->contents == 0 &&
|
|
inn->read_exec_only == 1 &&
|
|
inn->seg_32bit == 0 &&
|
|
inn->limit_in_pages == 0 &&
|
|
inn->seg_not_present == 1 &&
|
|
inn->useable == 0 )) {
|
|
entry_1 = 0;
|
|
entry_2 = 0;
|
|
goto install;
|
|
}
|
|
}
|
|
|
|
entry_1 = ((inn->base_addr & 0x0000ffff) << 16) |
|
|
(inn->limit & 0x0ffff);
|
|
entry_2 = (inn->base_addr & 0xff000000) |
|
|
((inn->base_addr & 0x00ff0000) >> 16) |
|
|
(inn->limit & 0xf0000) |
|
|
((inn->read_exec_only ^ 1) << 9) |
|
|
(inn->contents << 10) |
|
|
((inn->seg_not_present ^ 1) << 15) |
|
|
(inn->seg_32bit << 22) |
|
|
(inn->limit_in_pages << 23) |
|
|
0x7000;
|
|
if (!oldmode)
|
|
entry_2 |= (inn->useable << 20);
|
|
|
|
/* Install the new entry ... */
|
|
install:
|
|
out->LdtEnt.Words.word1 = entry_1;
|
|
out->LdtEnt.Words.word2 = entry_2;
|
|
}
|
|
|
|
/* Create a zeroed-out GDT. */
|
|
static VexGuestX86SegDescr* alloc_zeroed_x86_GDT ( void )
|
|
{
|
|
Int nbytes = VEX_GUEST_X86_GDT_NENT * sizeof(VexGuestX86SegDescr);
|
|
return VG_(arena_calloc)(VG_AR_CORE, "di.syswrap-x86.azxG.1", nbytes, 1);
|
|
}
|
|
|
|
/* Create a zeroed-out LDT. */
|
|
static VexGuestX86SegDescr* alloc_zeroed_x86_LDT ( void )
|
|
{
|
|
Int nbytes = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
|
|
return VG_(arena_calloc)(VG_AR_CORE, "di.syswrap-x86.azxL.1", nbytes, 1);
|
|
}
|
|
|
|
/* Free up an LDT or GDT allocated by the above fns. */
|
|
static void free_LDT_or_GDT ( VexGuestX86SegDescr* dt )
|
|
{
|
|
vg_assert(dt);
|
|
VG_(arena_free)(VG_AR_CORE, (void*)dt);
|
|
}
|
|
|
|
/* Copy contents between two existing LDTs. */
|
|
static void copy_LDT_from_to ( VexGuestX86SegDescr* src,
|
|
VexGuestX86SegDescr* dst )
|
|
{
|
|
Int i;
|
|
vg_assert(src);
|
|
vg_assert(dst);
|
|
for (i = 0; i < VEX_GUEST_X86_LDT_NENT; i++)
|
|
dst[i] = src[i];
|
|
}
|
|
|
|
/* Copy contents between two existing GDTs. */
|
|
static void copy_GDT_from_to ( VexGuestX86SegDescr* src,
|
|
VexGuestX86SegDescr* dst )
|
|
{
|
|
Int i;
|
|
vg_assert(src);
|
|
vg_assert(dst);
|
|
for (i = 0; i < VEX_GUEST_X86_GDT_NENT; i++)
|
|
dst[i] = src[i];
|
|
}
|
|
|
|
/* Free this thread's DTs, if it has any. */
|
|
static void deallocate_LGDTs_for_thread ( VexGuestX86State* vex )
|
|
{
|
|
vg_assert(sizeof(HWord) == sizeof(void*));
|
|
|
|
if (0)
|
|
VG_(printf)("deallocate_LGDTs_for_thread: "
|
|
"ldt = 0x%lx, gdt = 0x%lx\n",
|
|
vex->guest_LDT, vex->guest_GDT );
|
|
|
|
if (vex->guest_LDT != (HWord)NULL) {
|
|
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_LDT );
|
|
vex->guest_LDT = (HWord)NULL;
|
|
}
|
|
|
|
if (vex->guest_GDT != (HWord)NULL) {
|
|
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_GDT );
|
|
vex->guest_GDT = (HWord)NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* linux/kernel/ldt.c
|
|
*
|
|
* Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
|
|
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
|
|
*/
|
|
|
|
/*
|
|
* read_ldt() is not really atomic - this is not a problem since
|
|
* synchronization of reads and writes done to the LDT has to be
|
|
* assured by user-space anyway. Writes are atomic, to protect
|
|
* the security checks done on new descriptors.
|
|
*/
|
|
static
|
|
SysRes read_ldt ( ThreadId tid, UChar* ptr, UInt bytecount )
|
|
{
|
|
SysRes res;
|
|
UInt i, size;
|
|
UChar* ldt;
|
|
|
|
if (0)
|
|
VG_(printf)("read_ldt: tid = %d, ptr = %p, bytecount = %d\n",
|
|
tid, ptr, bytecount );
|
|
|
|
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
|
|
vg_assert(8 == sizeof(VexGuestX86SegDescr));
|
|
|
|
ldt = (UChar*)(VG_(threads)[tid].arch.vex.guest_LDT);
|
|
res = VG_(mk_SysRes_Success)( 0 );
|
|
if (ldt == NULL)
|
|
/* LDT not allocated, meaning all entries are null */
|
|
goto out;
|
|
|
|
size = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
|
|
if (size > bytecount)
|
|
size = bytecount;
|
|
|
|
res = VG_(mk_SysRes_Success)( size );
|
|
for (i = 0; i < size; i++)
|
|
ptr[i] = ldt[i];
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
|
|
static
|
|
SysRes write_ldt ( ThreadId tid, void* ptr, UInt bytecount, Int oldmode )
|
|
{
|
|
SysRes res;
|
|
VexGuestX86SegDescr* ldt;
|
|
vki_modify_ldt_t* ldt_info;
|
|
|
|
if (0)
|
|
VG_(printf)("write_ldt: tid = %d, ptr = %p, "
|
|
"bytecount = %d, oldmode = %d\n",
|
|
tid, ptr, bytecount, oldmode );
|
|
|
|
vg_assert(8 == sizeof(VexGuestX86SegDescr));
|
|
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
|
|
|
|
ldt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_LDT;
|
|
ldt_info = (vki_modify_ldt_t*)ptr;
|
|
|
|
res = VG_(mk_SysRes_Error)( VKI_EINVAL );
|
|
if (bytecount != sizeof(vki_modify_ldt_t))
|
|
goto out;
|
|
|
|
res = VG_(mk_SysRes_Error)( VKI_EINVAL );
|
|
if (ldt_info->entry_number >= VEX_GUEST_X86_LDT_NENT)
|
|
goto out;
|
|
if (ldt_info->contents == 3) {
|
|
if (oldmode)
|
|
goto out;
|
|
if (ldt_info->seg_not_present == 0)
|
|
goto out;
|
|
}
|
|
|
|
/* If this thread doesn't have an LDT, we'd better allocate it
|
|
now. */
|
|
if (ldt == NULL) {
|
|
ldt = alloc_zeroed_x86_LDT();
|
|
VG_(threads)[tid].arch.vex.guest_LDT = (HWord)ldt;
|
|
}
|
|
|
|
/* Install the new entry ... */
|
|
translate_to_hw_format ( ldt_info, &ldt[ldt_info->entry_number], oldmode );
|
|
res = VG_(mk_SysRes_Success)( 0 );
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
|
|
static SysRes sys_modify_ldt ( ThreadId tid,
|
|
Int func, void* ptr, UInt bytecount )
|
|
{
|
|
SysRes ret = VG_(mk_SysRes_Error)( VKI_ENOSYS );
|
|
|
|
switch (func) {
|
|
case 0:
|
|
ret = read_ldt(tid, ptr, bytecount);
|
|
break;
|
|
case 1:
|
|
ret = write_ldt(tid, ptr, bytecount, 1);
|
|
break;
|
|
case 2:
|
|
VG_(unimplemented)("sys_modify_ldt: func == 2");
|
|
/* god knows what this is about */
|
|
/* ret = read_default_ldt(ptr, bytecount); */
|
|
/*UNREACHED*/
|
|
break;
|
|
case 0x11:
|
|
ret = write_ldt(tid, ptr, bytecount, 0);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static SysRes sys_set_thread_area ( ThreadId tid, vki_modify_ldt_t* info )
|
|
{
|
|
Int idx;
|
|
VexGuestX86SegDescr* gdt;
|
|
|
|
vg_assert(8 == sizeof(VexGuestX86SegDescr));
|
|
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
|
|
|
|
if (info == NULL)
|
|
return VG_(mk_SysRes_Error)( VKI_EFAULT );
|
|
|
|
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
|
|
|
|
/* If the thread doesn't have a GDT, allocate it now. */
|
|
if (!gdt) {
|
|
gdt = alloc_zeroed_x86_GDT();
|
|
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
|
|
}
|
|
|
|
idx = info->entry_number;
|
|
|
|
if (idx == -1) {
|
|
/* Find and use the first free entry. Don't allocate entry
|
|
zero, because the hardware will never do that, and apparently
|
|
doing so confuses some code (perhaps stuff running on
|
|
Wine). */
|
|
for (idx = 1; idx < VEX_GUEST_X86_GDT_NENT; idx++) {
|
|
if (gdt[idx].LdtEnt.Words.word1 == 0
|
|
&& gdt[idx].LdtEnt.Words.word2 == 0)
|
|
break;
|
|
}
|
|
|
|
if (idx == VEX_GUEST_X86_GDT_NENT)
|
|
return VG_(mk_SysRes_Error)( VKI_ESRCH );
|
|
} else if (idx < 0 || idx == 0 || idx >= VEX_GUEST_X86_GDT_NENT) {
|
|
/* Similarly, reject attempts to use GDT[0]. */
|
|
return VG_(mk_SysRes_Error)( VKI_EINVAL );
|
|
}
|
|
|
|
translate_to_hw_format(info, &gdt[idx], 0);
|
|
|
|
VG_TRACK( pre_mem_write, Vg_CoreSysCall, tid,
|
|
"set_thread_area(info->entry)",
|
|
(Addr) & info->entry_number, sizeof(unsigned int) );
|
|
info->entry_number = idx;
|
|
VG_TRACK( post_mem_write, Vg_CoreSysCall, tid,
|
|
(Addr) & info->entry_number, sizeof(unsigned int) );
|
|
|
|
return VG_(mk_SysRes_Success)( 0 );
|
|
}
|
|
|
|
|
|
static SysRes sys_get_thread_area ( ThreadId tid, vki_modify_ldt_t* info )
|
|
{
|
|
Int idx;
|
|
VexGuestX86SegDescr* gdt;
|
|
|
|
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
|
|
vg_assert(8 == sizeof(VexGuestX86SegDescr));
|
|
|
|
if (info == NULL)
|
|
return VG_(mk_SysRes_Error)( VKI_EFAULT );
|
|
|
|
idx = info->entry_number;
|
|
|
|
if (idx < 0 || idx >= VEX_GUEST_X86_GDT_NENT)
|
|
return VG_(mk_SysRes_Error)( VKI_EINVAL );
|
|
|
|
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
|
|
|
|
/* If the thread doesn't have a GDT, allocate it now. */
|
|
if (!gdt) {
|
|
gdt = alloc_zeroed_x86_GDT();
|
|
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
|
|
}
|
|
|
|
info->base_addr = ( gdt[idx].LdtEnt.Bits.BaseHi << 24 ) |
|
|
( gdt[idx].LdtEnt.Bits.BaseMid << 16 ) |
|
|
gdt[idx].LdtEnt.Bits.BaseLow;
|
|
info->limit = ( gdt[idx].LdtEnt.Bits.LimitHi << 16 ) |
|
|
gdt[idx].LdtEnt.Bits.LimitLow;
|
|
info->seg_32bit = gdt[idx].LdtEnt.Bits.Default_Big;
|
|
info->contents = ( gdt[idx].LdtEnt.Bits.Type >> 2 ) & 0x3;
|
|
info->read_exec_only = ( gdt[idx].LdtEnt.Bits.Type & 0x1 ) ^ 0x1;
|
|
info->limit_in_pages = gdt[idx].LdtEnt.Bits.Granularity;
|
|
info->seg_not_present = gdt[idx].LdtEnt.Bits.Pres ^ 0x1;
|
|
info->useable = gdt[idx].LdtEnt.Bits.Sys;
|
|
info->reserved = 0;
|
|
|
|
return VG_(mk_SysRes_Success)( 0 );
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------
|
|
More thread stuff
|
|
------------------------------------------------------------------ */
|
|
|
|
void VG_(cleanup_thread) ( ThreadArchState* arch )
|
|
{
|
|
/* Release arch-specific resources held by this thread. */
|
|
/* On x86, we have to dump the LDT and GDT. */
|
|
deallocate_LGDTs_for_thread( &arch->vex );
|
|
}
|
|
|
|
|
|
static void setup_child ( /*OUT*/ ThreadArchState *child,
|
|
/*IN*/ ThreadArchState *parent,
|
|
Bool inherit_parents_GDT )
|
|
{
|
|
/* We inherit our parent's guest state. */
|
|
child->vex = parent->vex;
|
|
child->vex_shadow1 = parent->vex_shadow1;
|
|
child->vex_shadow2 = parent->vex_shadow2;
|
|
|
|
/* We inherit our parent's LDT. */
|
|
if (parent->vex.guest_LDT == (HWord)NULL) {
|
|
/* We hope this is the common case. */
|
|
child->vex.guest_LDT = (HWord)NULL;
|
|
} else {
|
|
/* No luck .. we have to take a copy of the parent's. */
|
|
child->vex.guest_LDT = (HWord)alloc_zeroed_x86_LDT();
|
|
copy_LDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_LDT,
|
|
(VexGuestX86SegDescr*)child->vex.guest_LDT );
|
|
}
|
|
|
|
/* Either we start with an empty GDT (the usual case) or inherit a
|
|
copy of our parents' one (Quadrics Elan3 driver -style clone
|
|
only). */
|
|
child->vex.guest_GDT = (HWord)NULL;
|
|
|
|
if (inherit_parents_GDT && parent->vex.guest_GDT != (HWord)NULL) {
|
|
child->vex.guest_GDT = (HWord)alloc_zeroed_x86_GDT();
|
|
copy_GDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_GDT,
|
|
(VexGuestX86SegDescr*)child->vex.guest_GDT );
|
|
}
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
PRE/POST wrappers for x86/Linux-specific syscalls
|
|
------------------------------------------------------------------ */
|
|
|
|
#define PRE(name) DEFN_PRE_TEMPLATE(x86_linux, name)
|
|
#define POST(name) DEFN_POST_TEMPLATE(x86_linux, name)
|
|
|
|
/* Add prototypes for the wrappers declared here, so that gcc doesn't
|
|
harass us for not having prototypes. Really this is a kludge --
|
|
the right thing to do is to make these wrappers 'static' since they
|
|
aren't visible outside this file, but that requires even more macro
|
|
magic. */
|
|
DECL_TEMPLATE(x86_linux, sys_stat64);
|
|
DECL_TEMPLATE(x86_linux, sys_fstatat64);
|
|
DECL_TEMPLATE(x86_linux, sys_fstat64);
|
|
DECL_TEMPLATE(x86_linux, sys_lstat64);
|
|
DECL_TEMPLATE(x86_linux, sys_clone);
|
|
DECL_TEMPLATE(x86_linux, old_mmap);
|
|
DECL_TEMPLATE(x86_linux, sys_mmap2);
|
|
DECL_TEMPLATE(x86_linux, sys_sigreturn);
|
|
DECL_TEMPLATE(x86_linux, sys_rt_sigreturn);
|
|
DECL_TEMPLATE(x86_linux, sys_modify_ldt);
|
|
DECL_TEMPLATE(x86_linux, sys_set_thread_area);
|
|
DECL_TEMPLATE(x86_linux, sys_get_thread_area);
|
|
DECL_TEMPLATE(x86_linux, sys_ptrace);
|
|
DECL_TEMPLATE(x86_linux, sys_sigsuspend);
|
|
DECL_TEMPLATE(x86_linux, old_select);
|
|
DECL_TEMPLATE(x86_linux, sys_vm86old);
|
|
DECL_TEMPLATE(x86_linux, sys_vm86);
|
|
DECL_TEMPLATE(x86_linux, sys_syscall223);
|
|
|
|
PRE(old_select)
|
|
{
|
|
/* struct sel_arg_struct {
|
|
unsigned long n;
|
|
fd_set *inp, *outp, *exp;
|
|
struct timeval *tvp;
|
|
};
|
|
*/
|
|
PRE_REG_READ1(long, "old_select", struct sel_arg_struct *, args);
|
|
PRE_MEM_READ( "old_select(args)", ARG1, 5*sizeof(UWord) );
|
|
*flags |= SfMayBlock;
|
|
{
|
|
UInt* arg_struct = (UInt*)ARG1;
|
|
UInt a1, a2, a3, a4, a5;
|
|
|
|
a1 = arg_struct[0];
|
|
a2 = arg_struct[1];
|
|
a3 = arg_struct[2];
|
|
a4 = arg_struct[3];
|
|
a5 = arg_struct[4];
|
|
|
|
PRINT("old_select ( %d, %#x, %#x, %#x, %#x )", a1,a2,a3,a4,a5);
|
|
if (a2 != (Addr)NULL)
|
|
PRE_MEM_READ( "old_select(readfds)", a2, a1/8 /* __FD_SETSIZE/8 */ );
|
|
if (a3 != (Addr)NULL)
|
|
PRE_MEM_READ( "old_select(writefds)", a3, a1/8 /* __FD_SETSIZE/8 */ );
|
|
if (a4 != (Addr)NULL)
|
|
PRE_MEM_READ( "old_select(exceptfds)", a4, a1/8 /* __FD_SETSIZE/8 */ );
|
|
if (a5 != (Addr)NULL)
|
|
PRE_MEM_READ( "old_select(timeout)", a5, sizeof(struct vki_timeval) );
|
|
}
|
|
}
|
|
|
|
PRE(sys_clone)
|
|
{
|
|
UInt cloneflags;
|
|
Bool badarg = False;
|
|
|
|
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
|
|
PRE_REG_READ2(int, "clone",
|
|
unsigned long, flags,
|
|
void *, child_stack);
|
|
|
|
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
|
|
if (VG_(tdict).track_pre_reg_read) {
|
|
PRA3("clone", int *, parent_tidptr);
|
|
}
|
|
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
|
|
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int),
|
|
VKI_PROT_WRITE)) {
|
|
badarg = True;
|
|
}
|
|
}
|
|
if (ARG1 & VKI_CLONE_SETTLS) {
|
|
if (VG_(tdict).track_pre_reg_read) {
|
|
PRA4("clone", vki_modify_ldt_t *, tlsinfo);
|
|
}
|
|
PRE_MEM_READ("clone(tlsinfo)", ARG4, sizeof(vki_modify_ldt_t));
|
|
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t),
|
|
VKI_PROT_READ)) {
|
|
badarg = True;
|
|
}
|
|
}
|
|
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
|
|
if (VG_(tdict).track_pre_reg_read) {
|
|
PRA5("clone", int *, child_tidptr);
|
|
}
|
|
PRE_MEM_WRITE("clone(child_tidptr)", ARG5, sizeof(Int));
|
|
if (!VG_(am_is_valid_for_client)(ARG5, sizeof(Int),
|
|
VKI_PROT_WRITE)) {
|
|
badarg = True;
|
|
}
|
|
}
|
|
|
|
if (badarg) {
|
|
SET_STATUS_Failure( VKI_EFAULT );
|
|
return;
|
|
}
|
|
|
|
cloneflags = ARG1;
|
|
|
|
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
|
|
SET_STATUS_Failure( VKI_EINVAL );
|
|
return;
|
|
}
|
|
|
|
/* Be ultra-paranoid and filter out any clone-variants we don't understand:
|
|
- ??? specifies clone flags of 0x100011
|
|
- ??? specifies clone flags of 0x1200011.
|
|
- NPTL specifies clone flags of 0x7D0F00.
|
|
- The Quadrics Elan3 driver specifies clone flags of 0xF00.
|
|
- Newer Quadrics Elan3 drivers with NTPL support specify 0x410F00.
|
|
Everything else is rejected.
|
|
*/
|
|
if (
|
|
1 ||
|
|
/* 11 Nov 05: for the time being, disable this ultra-paranoia.
|
|
The switch below probably does a good enough job. */
|
|
(cloneflags == 0x100011 || cloneflags == 0x1200011
|
|
|| cloneflags == 0x7D0F00
|
|
|| cloneflags == 0x790F00
|
|
|| cloneflags == 0x3D0F00
|
|
|| cloneflags == 0x410F00
|
|
|| cloneflags == 0xF00
|
|
|| cloneflags == 0xF21)) {
|
|
/* OK */
|
|
}
|
|
else {
|
|
/* Nah. We don't like it. Go away. */
|
|
goto reject;
|
|
}
|
|
|
|
/* Only look at the flags we really care about */
|
|
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
|
|
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
|
|
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
|
|
/* thread creation */
|
|
SET_STATUS_from_SysRes(
|
|
do_clone(tid,
|
|
ARG1, /* flags */
|
|
(Addr)ARG2, /* child ESP */
|
|
(Int *)ARG3, /* parent_tidptr */
|
|
(Int *)ARG5, /* child_tidptr */
|
|
(vki_modify_ldt_t *)ARG4)); /* set_tls */
|
|
break;
|
|
|
|
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
|
|
/* FALLTHROUGH - assume vfork == fork */
|
|
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
|
|
|
|
case 0: /* plain fork */
|
|
SET_STATUS_from_SysRes(
|
|
ML_(do_fork_clone)(tid,
|
|
cloneflags, /* flags */
|
|
(Int *)ARG3, /* parent_tidptr */
|
|
(Int *)ARG5)); /* child_tidptr */
|
|
break;
|
|
|
|
default:
|
|
reject:
|
|
/* should we just ENOSYS? */
|
|
VG_(message)(Vg_UserMsg, "\n");
|
|
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx\n", ARG1);
|
|
VG_(message)(Vg_UserMsg, "\n");
|
|
VG_(message)(Vg_UserMsg, "The only supported clone() uses are:\n");
|
|
VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)\n");
|
|
VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork\n");
|
|
VG_(message)(Vg_UserMsg, " - for the Quadrics Elan3 user-space driver\n");
|
|
VG_(unimplemented)
|
|
("Valgrind does not support general clone().");
|
|
}
|
|
|
|
if (SUCCESS) {
|
|
if (ARG1 & VKI_CLONE_PARENT_SETTID)
|
|
POST_MEM_WRITE(ARG3, sizeof(Int));
|
|
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
|
|
POST_MEM_WRITE(ARG5, sizeof(Int));
|
|
|
|
/* Thread creation was successful; let the child have the chance
|
|
to run */
|
|
*flags |= SfYieldAfter;
|
|
}
|
|
}
|
|
|
|
PRE(sys_sigreturn)
|
|
{
|
|
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
|
|
an explanation of what follows. */
|
|
|
|
ThreadState* tst;
|
|
PRINT("sys_sigreturn ( )");
|
|
|
|
vg_assert(VG_(is_valid_tid)(tid));
|
|
vg_assert(tid >= 1 && tid < VG_N_THREADS);
|
|
vg_assert(VG_(is_running_thread)(tid));
|
|
|
|
/* Adjust esp to point to start of frame; skip back up over
|
|
sigreturn sequence's "popl %eax" and handler ret addr */
|
|
tst = VG_(get_ThreadState)(tid);
|
|
tst->arch.vex.guest_ESP -= sizeof(Addr)+sizeof(Word);
|
|
/* XXX why does ESP change differ from rt_sigreturn case below? */
|
|
|
|
/* This is only so that the EIP is (might be) useful to report if
|
|
something goes wrong in the sigreturn */
|
|
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
|
|
|
|
/* Restore register state from frame and remove it */
|
|
VG_(sigframe_destroy)(tid, False);
|
|
|
|
/* Tell the driver not to update the guest state with the "result",
|
|
and set a bogus result to keep it happy. */
|
|
*flags |= SfNoWriteResult;
|
|
SET_STATUS_Success(0);
|
|
|
|
/* Check to see if any signals arose as a result of this. */
|
|
*flags |= SfPollAfter;
|
|
}
|
|
|
|
PRE(sys_rt_sigreturn)
|
|
{
|
|
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
|
|
an explanation of what follows. */
|
|
|
|
ThreadState* tst;
|
|
PRINT("sys_rt_sigreturn ( )");
|
|
|
|
vg_assert(VG_(is_valid_tid)(tid));
|
|
vg_assert(tid >= 1 && tid < VG_N_THREADS);
|
|
vg_assert(VG_(is_running_thread)(tid));
|
|
|
|
/* Adjust esp to point to start of frame; skip back up over handler
|
|
ret addr */
|
|
tst = VG_(get_ThreadState)(tid);
|
|
tst->arch.vex.guest_ESP -= sizeof(Addr);
|
|
/* XXX why does ESP change differ from sigreturn case above? */
|
|
|
|
/* This is only so that the EIP is (might be) useful to report if
|
|
something goes wrong in the sigreturn */
|
|
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
|
|
|
|
/* Restore register state from frame and remove it */
|
|
VG_(sigframe_destroy)(tid, True);
|
|
|
|
/* Tell the driver not to update the guest state with the "result",
|
|
and set a bogus result to keep it happy. */
|
|
*flags |= SfNoWriteResult;
|
|
SET_STATUS_Success(0);
|
|
|
|
/* Check to see if any signals arose as a result of this. */
|
|
*flags |= SfPollAfter;
|
|
}
|
|
|
|
PRE(sys_modify_ldt)
|
|
{
|
|
PRINT("sys_modify_ldt ( %ld, %#lx, %ld )", ARG1,ARG2,ARG3);
|
|
PRE_REG_READ3(int, "modify_ldt", int, func, void *, ptr,
|
|
unsigned long, bytecount);
|
|
|
|
if (ARG1 == 0) {
|
|
/* read the LDT into ptr */
|
|
PRE_MEM_WRITE( "modify_ldt(ptr)", ARG2, ARG3 );
|
|
}
|
|
if (ARG1 == 1 || ARG1 == 0x11) {
|
|
/* write the LDT with the entry pointed at by ptr */
|
|
PRE_MEM_READ( "modify_ldt(ptr)", ARG2, sizeof(vki_modify_ldt_t) );
|
|
}
|
|
/* "do" the syscall ourselves; the kernel never sees it */
|
|
SET_STATUS_from_SysRes( sys_modify_ldt( tid, ARG1, (void*)ARG2, ARG3 ) );
|
|
|
|
if (ARG1 == 0 && SUCCESS && RES > 0) {
|
|
POST_MEM_WRITE( ARG2, RES );
|
|
}
|
|
}
|
|
|
|
PRE(sys_set_thread_area)
|
|
{
|
|
PRINT("sys_set_thread_area ( %#lx )", ARG1);
|
|
PRE_REG_READ1(int, "set_thread_area", struct user_desc *, u_info)
|
|
PRE_MEM_READ( "set_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) );
|
|
|
|
/* "do" the syscall ourselves; the kernel never sees it */
|
|
SET_STATUS_from_SysRes( sys_set_thread_area( tid, (void *)ARG1 ) );
|
|
}
|
|
|
|
PRE(sys_get_thread_area)
|
|
{
|
|
PRINT("sys_get_thread_area ( %#lx )", ARG1);
|
|
PRE_REG_READ1(int, "get_thread_area", struct user_desc *, u_info)
|
|
PRE_MEM_WRITE( "get_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) );
|
|
|
|
/* "do" the syscall ourselves; the kernel never sees it */
|
|
SET_STATUS_from_SysRes( sys_get_thread_area( tid, (void *)ARG1 ) );
|
|
|
|
if (SUCCESS) {
|
|
POST_MEM_WRITE( ARG1, sizeof(vki_modify_ldt_t) );
|
|
}
|
|
}
|
|
|
|
// Parts of this are x86-specific, but the *PEEK* cases are generic.
|
|
//
|
|
// ARG3 is only used for pointers into the traced process's address
|
|
// space and for offsets into the traced process's struct
|
|
// user_regs_struct. It is never a pointer into this process's memory
|
|
// space, and we should therefore not check anything it points to.
|
|
PRE(sys_ptrace)
|
|
{
|
|
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4);
|
|
PRE_REG_READ4(int, "ptrace",
|
|
long, request, long, pid, long, addr, long, data);
|
|
switch (ARG1) {
|
|
case VKI_PTRACE_PEEKTEXT:
|
|
case VKI_PTRACE_PEEKDATA:
|
|
case VKI_PTRACE_PEEKUSR:
|
|
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
|
|
sizeof (long));
|
|
break;
|
|
case VKI_PTRACE_GETREGS:
|
|
PRE_MEM_WRITE( "ptrace(getregs)", ARG4,
|
|
sizeof (struct vki_user_regs_struct));
|
|
break;
|
|
case VKI_PTRACE_GETFPREGS:
|
|
PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4,
|
|
sizeof (struct vki_user_i387_struct));
|
|
break;
|
|
case VKI_PTRACE_GETFPXREGS:
|
|
PRE_MEM_WRITE( "ptrace(getfpxregs)", ARG4,
|
|
sizeof(struct vki_user_fxsr_struct) );
|
|
break;
|
|
case VKI_PTRACE_GET_THREAD_AREA:
|
|
PRE_MEM_WRITE( "ptrace(get_thread_area)", ARG4,
|
|
sizeof(struct vki_user_desc) );
|
|
break;
|
|
case VKI_PTRACE_SETREGS:
|
|
PRE_MEM_READ( "ptrace(setregs)", ARG4,
|
|
sizeof (struct vki_user_regs_struct));
|
|
break;
|
|
case VKI_PTRACE_SETFPREGS:
|
|
PRE_MEM_READ( "ptrace(setfpregs)", ARG4,
|
|
sizeof (struct vki_user_i387_struct));
|
|
break;
|
|
case VKI_PTRACE_SETFPXREGS:
|
|
PRE_MEM_READ( "ptrace(setfpxregs)", ARG4,
|
|
sizeof(struct vki_user_fxsr_struct) );
|
|
break;
|
|
case VKI_PTRACE_SET_THREAD_AREA:
|
|
PRE_MEM_READ( "ptrace(set_thread_area)", ARG4,
|
|
sizeof(struct vki_user_desc) );
|
|
break;
|
|
case VKI_PTRACE_GETEVENTMSG:
|
|
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
|
|
break;
|
|
case VKI_PTRACE_GETSIGINFO:
|
|
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
|
|
break;
|
|
case VKI_PTRACE_SETSIGINFO:
|
|
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
|
|
break;
|
|
case VKI_PTRACE_GETREGSET:
|
|
ML_(linux_PRE_getregset)(tid, ARG3, ARG4);
|
|
break;
|
|
case VKI_PTRACE_SETREGSET:
|
|
ML_(linux_PRE_setregset)(tid, ARG3, ARG4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
POST(sys_ptrace)
|
|
{
|
|
switch (ARG1) {
|
|
case VKI_PTRACE_PEEKTEXT:
|
|
case VKI_PTRACE_PEEKDATA:
|
|
case VKI_PTRACE_PEEKUSR:
|
|
POST_MEM_WRITE( ARG4, sizeof (long));
|
|
break;
|
|
case VKI_PTRACE_GETREGS:
|
|
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct));
|
|
break;
|
|
case VKI_PTRACE_GETFPREGS:
|
|
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct));
|
|
break;
|
|
case VKI_PTRACE_GETFPXREGS:
|
|
POST_MEM_WRITE( ARG4, sizeof(struct vki_user_fxsr_struct) );
|
|
break;
|
|
case VKI_PTRACE_GET_THREAD_AREA:
|
|
POST_MEM_WRITE( ARG4, sizeof(struct vki_user_desc) );
|
|
break;
|
|
case VKI_PTRACE_GETEVENTMSG:
|
|
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
|
|
break;
|
|
case VKI_PTRACE_GETSIGINFO:
|
|
/* XXX: This is a simplification. Different parts of the
|
|
* siginfo_t are valid depending on the type of signal.
|
|
*/
|
|
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
|
|
break;
|
|
case VKI_PTRACE_GETREGSET:
|
|
ML_(linux_POST_getregset)(tid, ARG3, ARG4);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
PRE(old_mmap)
|
|
{
|
|
/* struct mmap_arg_struct {
|
|
unsigned long addr;
|
|
unsigned long len;
|
|
unsigned long prot;
|
|
unsigned long flags;
|
|
unsigned long fd;
|
|
unsigned long offset;
|
|
}; */
|
|
UWord a1, a2, a3, a4, a5, a6;
|
|
SysRes r;
|
|
|
|
UWord* args = (UWord*)ARG1;
|
|
PRE_REG_READ1(long, "old_mmap", struct mmap_arg_struct *, args);
|
|
PRE_MEM_READ( "old_mmap(args)", (Addr)args, 6*sizeof(UWord) );
|
|
|
|
a1 = args[1-1];
|
|
a2 = args[2-1];
|
|
a3 = args[3-1];
|
|
a4 = args[4-1];
|
|
a5 = args[5-1];
|
|
a6 = args[6-1];
|
|
|
|
PRINT("old_mmap ( %#lx, %llu, %ld, %ld, %ld, %ld )",
|
|
a1, (ULong)a2, a3, a4, a5, a6 );
|
|
|
|
r = ML_(generic_PRE_sys_mmap)( tid, a1, a2, a3, a4, a5, (Off64T)a6 );
|
|
SET_STATUS_from_SysRes(r);
|
|
}
|
|
|
|
PRE(sys_mmap2)
|
|
{
|
|
SysRes r;
|
|
|
|
// Exactly like old_mmap() except:
|
|
// - all 6 args are passed in regs, rather than in a memory-block.
|
|
// - the file offset is specified in pagesize units rather than bytes,
|
|
// so that it can be used for files bigger than 2^32 bytes.
|
|
// pagesize or 4K-size units in offset? For ppc32/64-linux, this is
|
|
// 4K-sized. Assert that the page size is 4K here for safety.
|
|
vg_assert(VKI_PAGE_SIZE == 4096);
|
|
PRINT("sys_mmap2 ( %#lx, %llu, %ld, %ld, %ld, %ld )",
|
|
ARG1, (ULong)ARG2, ARG3, ARG4, ARG5, ARG6 );
|
|
PRE_REG_READ6(long, "mmap2",
|
|
unsigned long, start, unsigned long, length,
|
|
unsigned long, prot, unsigned long, flags,
|
|
unsigned long, fd, unsigned long, offset);
|
|
|
|
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5,
|
|
4096 * (Off64T)ARG6 );
|
|
SET_STATUS_from_SysRes(r);
|
|
}
|
|
|
|
// XXX: lstat64/fstat64/stat64 are generic, but not necessarily
|
|
// applicable to every architecture -- I think only to 32-bit archs.
|
|
// We're going to need something like linux/core_os32.h for such
|
|
// things, eventually, I think. --njn
|
|
PRE(sys_lstat64)
|
|
{
|
|
PRINT("sys_lstat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2);
|
|
PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf);
|
|
PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 );
|
|
PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
POST(sys_lstat64)
|
|
{
|
|
vg_assert(SUCCESS);
|
|
if (RES == 0) {
|
|
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
}
|
|
|
|
PRE(sys_stat64)
|
|
{
|
|
FUSE_COMPATIBLE_MAY_BLOCK();
|
|
PRINT("sys_stat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2);
|
|
PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf);
|
|
PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 );
|
|
PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
POST(sys_stat64)
|
|
{
|
|
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
PRE(sys_fstatat64)
|
|
{
|
|
FUSE_COMPATIBLE_MAY_BLOCK();
|
|
PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx )",ARG1,ARG2,(char*)ARG2,ARG3);
|
|
PRE_REG_READ3(long, "fstatat64",
|
|
int, dfd, char *, file_name, struct stat64 *, buf);
|
|
PRE_MEM_RASCIIZ( "fstatat64(file_name)", ARG2 );
|
|
PRE_MEM_WRITE( "fstatat64(buf)", ARG3, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
POST(sys_fstatat64)
|
|
{
|
|
POST_MEM_WRITE( ARG3, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
PRE(sys_fstat64)
|
|
{
|
|
PRINT("sys_fstat64 ( %ld, %#lx )",ARG1,ARG2);
|
|
PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf);
|
|
PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
POST(sys_fstat64)
|
|
{
|
|
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
|
|
}
|
|
|
|
/* NB: arm-linux has a clone of this one, and ppc32-linux has an almost
|
|
identical version. */
|
|
PRE(sys_sigsuspend)
|
|
{
|
|
/* The C library interface to sigsuspend just takes a pointer to
|
|
a signal mask but this system call has three arguments - the first
|
|
two don't appear to be used by the kernel and are always passed as
|
|
zero by glibc and the third is the first word of the signal mask
|
|
so only 32 signals are supported.
|
|
|
|
In fact glibc normally uses rt_sigsuspend if it is available as
|
|
that takes a pointer to the signal mask so supports more signals.
|
|
*/
|
|
*flags |= SfMayBlock;
|
|
PRINT("sys_sigsuspend ( %ld, %ld, %ld )", ARG1,ARG2,ARG3 );
|
|
PRE_REG_READ3(int, "sigsuspend",
|
|
int, history0, int, history1,
|
|
vki_old_sigset_t, mask);
|
|
}
|
|
|
|
PRE(sys_vm86old)
|
|
{
|
|
PRINT("sys_vm86old ( %#lx )", ARG1);
|
|
PRE_REG_READ1(int, "vm86old", struct vm86_struct *, info);
|
|
PRE_MEM_WRITE( "vm86old(info)", ARG1, sizeof(struct vki_vm86_struct));
|
|
}
|
|
|
|
POST(sys_vm86old)
|
|
{
|
|
POST_MEM_WRITE( ARG1, sizeof(struct vki_vm86_struct));
|
|
}
|
|
|
|
PRE(sys_vm86)
|
|
{
|
|
PRINT("sys_vm86 ( %ld, %#lx )", ARG1,ARG2);
|
|
PRE_REG_READ2(int, "vm86", unsigned long, fn, struct vm86plus_struct *, v86);
|
|
if (ARG1 == VKI_VM86_ENTER || ARG1 == VKI_VM86_ENTER_NO_BYPASS)
|
|
PRE_MEM_WRITE( "vm86(v86)", ARG2, sizeof(struct vki_vm86plus_struct));
|
|
}
|
|
|
|
POST(sys_vm86)
|
|
{
|
|
if (ARG1 == VKI_VM86_ENTER || ARG1 == VKI_VM86_ENTER_NO_BYPASS)
|
|
POST_MEM_WRITE( ARG2, sizeof(struct vki_vm86plus_struct));
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------
|
|
PRE/POST wrappers for x86/Linux-variant specific syscalls
|
|
------------------------------------------------------------ */
|
|
|
|
PRE(sys_syscall223)
|
|
{
|
|
Int err;
|
|
|
|
/* 223 is used by sys_bproc. If we're not on a declared bproc
|
|
variant, fail in the usual way. */
|
|
|
|
if (!KernelVariantiS(KernelVariant_bproc, VG_(clo_kernel_variant))) {
|
|
PRINT("non-existent syscall! (syscall 223)");
|
|
PRE_REG_READ0(long, "ni_syscall(223)");
|
|
SET_STATUS_Failure( VKI_ENOSYS );
|
|
return;
|
|
}
|
|
|
|
err = ML_(linux_variant_PRE_sys_bproc)( ARG1, ARG2, ARG3,
|
|
ARG4, ARG5, ARG6 );
|
|
if (err) {
|
|
SET_STATUS_Failure( err );
|
|
return;
|
|
}
|
|
/* Let it go through. */
|
|
*flags |= SfMayBlock; /* who knows? play safe. */
|
|
}
|
|
|
|
POST(sys_syscall223)
|
|
{
|
|
ML_(linux_variant_POST_sys_bproc)( ARG1, ARG2, ARG3,
|
|
ARG4, ARG5, ARG6 );
|
|
}
|
|
|
|
#undef PRE
|
|
#undef POST
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
The x86/Linux syscall table
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Add an x86-linux specific wrapper to a syscall table. */
|
|
#define PLAX_(sysno, name) WRAPPER_ENTRY_X_(x86_linux, sysno, name)
|
|
#define PLAXY(sysno, name) WRAPPER_ENTRY_XY(x86_linux, sysno, name)
|
|
|
|
|
|
// This table maps from __NR_xxx syscall numbers (from
|
|
// linux/include/asm-i386/unistd.h) to the appropriate PRE/POST sys_foo()
|
|
// wrappers on x86 (as per sys_call_table in linux/arch/i386/kernel/entry.S).
|
|
//
|
|
// For those syscalls not handled by Valgrind, the annotation indicate its
|
|
// arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/?
|
|
// (unknown).
|
|
|
|
static SyscallTableEntry syscall_table[] = {
|
|
//zz // (restart_syscall) // 0
|
|
GENX_(__NR_exit, sys_exit), // 1
|
|
GENX_(__NR_fork, sys_fork), // 2
|
|
GENXY(__NR_read, sys_read), // 3
|
|
GENX_(__NR_write, sys_write), // 4
|
|
|
|
GENXY(__NR_open, sys_open), // 5
|
|
GENXY(__NR_close, sys_close), // 6
|
|
GENXY(__NR_waitpid, sys_waitpid), // 7
|
|
GENXY(__NR_creat, sys_creat), // 8
|
|
GENX_(__NR_link, sys_link), // 9
|
|
|
|
GENX_(__NR_unlink, sys_unlink), // 10
|
|
GENX_(__NR_execve, sys_execve), // 11
|
|
GENX_(__NR_chdir, sys_chdir), // 12
|
|
GENXY(__NR_time, sys_time), // 13
|
|
GENX_(__NR_mknod, sys_mknod), // 14
|
|
|
|
GENX_(__NR_chmod, sys_chmod), // 15
|
|
//zz LINX_(__NR_lchown, sys_lchown16), // 16
|
|
GENX_(__NR_break, sys_ni_syscall), // 17
|
|
//zz // (__NR_oldstat, sys_stat), // 18 (obsolete)
|
|
LINX_(__NR_lseek, sys_lseek), // 19
|
|
|
|
GENX_(__NR_getpid, sys_getpid), // 20
|
|
LINX_(__NR_mount, sys_mount), // 21
|
|
LINX_(__NR_umount, sys_oldumount), // 22
|
|
LINX_(__NR_setuid, sys_setuid16), // 23 ## P
|
|
LINX_(__NR_getuid, sys_getuid16), // 24 ## P
|
|
|
|
LINX_(__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN)
|
|
PLAXY(__NR_ptrace, sys_ptrace), // 26
|
|
GENX_(__NR_alarm, sys_alarm), // 27
|
|
//zz // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete
|
|
GENX_(__NR_pause, sys_pause), // 29
|
|
|
|
LINX_(__NR_utime, sys_utime), // 30
|
|
GENX_(__NR_stty, sys_ni_syscall), // 31
|
|
GENX_(__NR_gtty, sys_ni_syscall), // 32
|
|
GENX_(__NR_access, sys_access), // 33
|
|
GENX_(__NR_nice, sys_nice), // 34
|
|
|
|
GENX_(__NR_ftime, sys_ni_syscall), // 35
|
|
GENX_(__NR_sync, sys_sync), // 36
|
|
GENX_(__NR_kill, sys_kill), // 37
|
|
GENX_(__NR_rename, sys_rename), // 38
|
|
GENX_(__NR_mkdir, sys_mkdir), // 39
|
|
|
|
GENX_(__NR_rmdir, sys_rmdir), // 40
|
|
GENXY(__NR_dup, sys_dup), // 41
|
|
LINXY(__NR_pipe, sys_pipe), // 42
|
|
GENXY(__NR_times, sys_times), // 43
|
|
GENX_(__NR_prof, sys_ni_syscall), // 44
|
|
//zz
|
|
GENX_(__NR_brk, sys_brk), // 45
|
|
LINX_(__NR_setgid, sys_setgid16), // 46
|
|
LINX_(__NR_getgid, sys_getgid16), // 47
|
|
//zz // (__NR_signal, sys_signal), // 48 */* (ANSI C)
|
|
LINX_(__NR_geteuid, sys_geteuid16), // 49
|
|
|
|
LINX_(__NR_getegid, sys_getegid16), // 50
|
|
GENX_(__NR_acct, sys_acct), // 51
|
|
LINX_(__NR_umount2, sys_umount), // 52
|
|
GENX_(__NR_lock, sys_ni_syscall), // 53
|
|
LINXY(__NR_ioctl, sys_ioctl), // 54
|
|
|
|
LINXY(__NR_fcntl, sys_fcntl), // 55
|
|
GENX_(__NR_mpx, sys_ni_syscall), // 56
|
|
GENX_(__NR_setpgid, sys_setpgid), // 57
|
|
GENX_(__NR_ulimit, sys_ni_syscall), // 58
|
|
//zz // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete
|
|
//zz
|
|
GENX_(__NR_umask, sys_umask), // 60
|
|
GENX_(__NR_chroot, sys_chroot), // 61
|
|
//zz // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated
|
|
GENXY(__NR_dup2, sys_dup2), // 63
|
|
GENX_(__NR_getppid, sys_getppid), // 64
|
|
|
|
GENX_(__NR_getpgrp, sys_getpgrp), // 65
|
|
GENX_(__NR_setsid, sys_setsid), // 66
|
|
LINXY(__NR_sigaction, sys_sigaction), // 67
|
|
//zz // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C)
|
|
//zz // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C)
|
|
//zz
|
|
LINX_(__NR_setreuid, sys_setreuid16), // 70
|
|
LINX_(__NR_setregid, sys_setregid16), // 71
|
|
PLAX_(__NR_sigsuspend, sys_sigsuspend), // 72
|
|
LINXY(__NR_sigpending, sys_sigpending), // 73
|
|
GENX_(__NR_sethostname, sys_sethostname), // 74
|
|
//zz
|
|
GENX_(__NR_setrlimit, sys_setrlimit), // 75
|
|
GENXY(__NR_getrlimit, sys_old_getrlimit), // 76
|
|
GENXY(__NR_getrusage, sys_getrusage), // 77
|
|
GENXY(__NR_gettimeofday, sys_gettimeofday), // 78
|
|
GENX_(__NR_settimeofday, sys_settimeofday), // 79
|
|
|
|
LINXY(__NR_getgroups, sys_getgroups16), // 80
|
|
LINX_(__NR_setgroups, sys_setgroups16), // 81
|
|
PLAX_(__NR_select, old_select), // 82
|
|
GENX_(__NR_symlink, sys_symlink), // 83
|
|
//zz // (__NR_oldlstat, sys_lstat), // 84 -- obsolete
|
|
//zz
|
|
GENX_(__NR_readlink, sys_readlink), // 85
|
|
//zz // (__NR_uselib, sys_uselib), // 86 */Linux
|
|
//zz // (__NR_swapon, sys_swapon), // 87 */Linux
|
|
//zz // (__NR_reboot, sys_reboot), // 88 */Linux
|
|
//zz // (__NR_readdir, old_readdir), // 89 -- superseded
|
|
//zz
|
|
PLAX_(__NR_mmap, old_mmap), // 90
|
|
GENXY(__NR_munmap, sys_munmap), // 91
|
|
GENX_(__NR_truncate, sys_truncate), // 92
|
|
GENX_(__NR_ftruncate, sys_ftruncate), // 93
|
|
GENX_(__NR_fchmod, sys_fchmod), // 94
|
|
|
|
LINX_(__NR_fchown, sys_fchown16), // 95
|
|
GENX_(__NR_getpriority, sys_getpriority), // 96
|
|
GENX_(__NR_setpriority, sys_setpriority), // 97
|
|
GENX_(__NR_profil, sys_ni_syscall), // 98
|
|
GENXY(__NR_statfs, sys_statfs), // 99
|
|
|
|
GENXY(__NR_fstatfs, sys_fstatfs), // 100
|
|
LINX_(__NR_ioperm, sys_ioperm), // 101
|
|
LINXY(__NR_socketcall, sys_socketcall), // 102 x86/Linux-only
|
|
LINXY(__NR_syslog, sys_syslog), // 103
|
|
GENXY(__NR_setitimer, sys_setitimer), // 104
|
|
|
|
GENXY(__NR_getitimer, sys_getitimer), // 105
|
|
GENXY(__NR_stat, sys_newstat), // 106
|
|
GENXY(__NR_lstat, sys_newlstat), // 107
|
|
GENXY(__NR_fstat, sys_newfstat), // 108
|
|
//zz // (__NR_olduname, sys_uname), // 109 -- obsolete
|
|
//zz
|
|
GENX_(__NR_iopl, sys_iopl), // 110
|
|
LINX_(__NR_vhangup, sys_vhangup), // 111
|
|
GENX_(__NR_idle, sys_ni_syscall), // 112
|
|
PLAXY(__NR_vm86old, sys_vm86old), // 113 x86/Linux-only
|
|
GENXY(__NR_wait4, sys_wait4), // 114
|
|
//zz
|
|
//zz // (__NR_swapoff, sys_swapoff), // 115 */Linux
|
|
LINXY(__NR_sysinfo, sys_sysinfo), // 116
|
|
LINXY(__NR_ipc, sys_ipc), // 117
|
|
GENX_(__NR_fsync, sys_fsync), // 118
|
|
PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux
|
|
|
|
PLAX_(__NR_clone, sys_clone), // 120
|
|
//zz // (__NR_setdomainname, sys_setdomainname), // 121 */*(?)
|
|
GENXY(__NR_uname, sys_newuname), // 122
|
|
PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123
|
|
LINXY(__NR_adjtimex, sys_adjtimex), // 124
|
|
|
|
GENXY(__NR_mprotect, sys_mprotect), // 125
|
|
LINXY(__NR_sigprocmask, sys_sigprocmask), // 126
|
|
//zz // Nb: create_module() was removed 2.4-->2.6
|
|
GENX_(__NR_create_module, sys_ni_syscall), // 127
|
|
LINX_(__NR_init_module, sys_init_module), // 128
|
|
LINX_(__NR_delete_module, sys_delete_module), // 129
|
|
//zz
|
|
//zz // Nb: get_kernel_syms() was removed 2.4-->2.6
|
|
GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130
|
|
LINX_(__NR_quotactl, sys_quotactl), // 131
|
|
GENX_(__NR_getpgid, sys_getpgid), // 132
|
|
GENX_(__NR_fchdir, sys_fchdir), // 133
|
|
//zz // (__NR_bdflush, sys_bdflush), // 134 */Linux
|
|
//zz
|
|
//zz // (__NR_sysfs, sys_sysfs), // 135 SVr4
|
|
LINX_(__NR_personality, sys_personality), // 136
|
|
GENX_(__NR_afs_syscall, sys_ni_syscall), // 137
|
|
LINX_(__NR_setfsuid, sys_setfsuid16), // 138
|
|
LINX_(__NR_setfsgid, sys_setfsgid16), // 139
|
|
|
|
LINXY(__NR__llseek, sys_llseek), // 140
|
|
GENXY(__NR_getdents, sys_getdents), // 141
|
|
GENX_(__NR__newselect, sys_select), // 142
|
|
GENX_(__NR_flock, sys_flock), // 143
|
|
GENX_(__NR_msync, sys_msync), // 144
|
|
|
|
GENXY(__NR_readv, sys_readv), // 145
|
|
GENX_(__NR_writev, sys_writev), // 146
|
|
GENX_(__NR_getsid, sys_getsid), // 147
|
|
GENX_(__NR_fdatasync, sys_fdatasync), // 148
|
|
LINXY(__NR__sysctl, sys_sysctl), // 149
|
|
|
|
GENX_(__NR_mlock, sys_mlock), // 150
|
|
GENX_(__NR_munlock, sys_munlock), // 151
|
|
GENX_(__NR_mlockall, sys_mlockall), // 152
|
|
LINX_(__NR_munlockall, sys_munlockall), // 153
|
|
LINXY(__NR_sched_setparam, sys_sched_setparam), // 154
|
|
|
|
LINXY(__NR_sched_getparam, sys_sched_getparam), // 155
|
|
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156
|
|
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157
|
|
LINX_(__NR_sched_yield, sys_sched_yield), // 158
|
|
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159
|
|
|
|
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160
|
|
LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161
|
|
GENXY(__NR_nanosleep, sys_nanosleep), // 162
|
|
GENX_(__NR_mremap, sys_mremap), // 163
|
|
LINX_(__NR_setresuid, sys_setresuid16), // 164
|
|
|
|
LINXY(__NR_getresuid, sys_getresuid16), // 165
|
|
PLAXY(__NR_vm86, sys_vm86), // 166 x86/Linux-only
|
|
GENX_(__NR_query_module, sys_ni_syscall), // 167
|
|
GENXY(__NR_poll, sys_poll), // 168
|
|
//zz // (__NR_nfsservctl, sys_nfsservctl), // 169 */Linux
|
|
//zz
|
|
LINX_(__NR_setresgid, sys_setresgid16), // 170
|
|
LINXY(__NR_getresgid, sys_getresgid16), // 171
|
|
LINXY(__NR_prctl, sys_prctl), // 172
|
|
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173 x86/Linux only?
|
|
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174
|
|
|
|
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175
|
|
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176
|
|
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 177
|
|
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 178
|
|
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179
|
|
|
|
GENXY(__NR_pread64, sys_pread64), // 180
|
|
GENX_(__NR_pwrite64, sys_pwrite64), // 181
|
|
LINX_(__NR_chown, sys_chown16), // 182
|
|
GENXY(__NR_getcwd, sys_getcwd), // 183
|
|
LINXY(__NR_capget, sys_capget), // 184
|
|
|
|
LINX_(__NR_capset, sys_capset), // 185
|
|
GENXY(__NR_sigaltstack, sys_sigaltstack), // 186
|
|
LINXY(__NR_sendfile, sys_sendfile), // 187
|
|
GENXY(__NR_getpmsg, sys_getpmsg), // 188
|
|
GENX_(__NR_putpmsg, sys_putpmsg), // 189
|
|
|
|
// Nb: we treat vfork as fork
|
|
GENX_(__NR_vfork, sys_fork), // 190
|
|
GENXY(__NR_ugetrlimit, sys_getrlimit), // 191
|
|
PLAX_(__NR_mmap2, sys_mmap2), // 192
|
|
GENX_(__NR_truncate64, sys_truncate64), // 193
|
|
GENX_(__NR_ftruncate64, sys_ftruncate64), // 194
|
|
|
|
PLAXY(__NR_stat64, sys_stat64), // 195
|
|
PLAXY(__NR_lstat64, sys_lstat64), // 196
|
|
PLAXY(__NR_fstat64, sys_fstat64), // 197
|
|
GENX_(__NR_lchown32, sys_lchown), // 198
|
|
GENX_(__NR_getuid32, sys_getuid), // 199
|
|
|
|
GENX_(__NR_getgid32, sys_getgid), // 200
|
|
GENX_(__NR_geteuid32, sys_geteuid), // 201
|
|
GENX_(__NR_getegid32, sys_getegid), // 202
|
|
GENX_(__NR_setreuid32, sys_setreuid), // 203
|
|
GENX_(__NR_setregid32, sys_setregid), // 204
|
|
|
|
GENXY(__NR_getgroups32, sys_getgroups), // 205
|
|
GENX_(__NR_setgroups32, sys_setgroups), // 206
|
|
GENX_(__NR_fchown32, sys_fchown), // 207
|
|
LINX_(__NR_setresuid32, sys_setresuid), // 208
|
|
LINXY(__NR_getresuid32, sys_getresuid), // 209
|
|
|
|
LINX_(__NR_setresgid32, sys_setresgid), // 210
|
|
LINXY(__NR_getresgid32, sys_getresgid), // 211
|
|
GENX_(__NR_chown32, sys_chown), // 212
|
|
GENX_(__NR_setuid32, sys_setuid), // 213
|
|
GENX_(__NR_setgid32, sys_setgid), // 214
|
|
|
|
LINX_(__NR_setfsuid32, sys_setfsuid), // 215
|
|
LINX_(__NR_setfsgid32, sys_setfsgid), // 216
|
|
//zz // (__NR_pivot_root, sys_pivot_root), // 217 */Linux
|
|
GENXY(__NR_mincore, sys_mincore), // 218
|
|
GENX_(__NR_madvise, sys_madvise), // 219
|
|
|
|
GENXY(__NR_getdents64, sys_getdents64), // 220
|
|
LINXY(__NR_fcntl64, sys_fcntl64), // 221
|
|
GENX_(222, sys_ni_syscall), // 222
|
|
PLAXY(223, sys_syscall223), // 223 // sys_bproc?
|
|
LINX_(__NR_gettid, sys_gettid), // 224
|
|
|
|
LINX_(__NR_readahead, sys_readahead), // 225 */Linux
|
|
LINX_(__NR_setxattr, sys_setxattr), // 226
|
|
LINX_(__NR_lsetxattr, sys_lsetxattr), // 227
|
|
LINX_(__NR_fsetxattr, sys_fsetxattr), // 228
|
|
LINXY(__NR_getxattr, sys_getxattr), // 229
|
|
|
|
LINXY(__NR_lgetxattr, sys_lgetxattr), // 230
|
|
LINXY(__NR_fgetxattr, sys_fgetxattr), // 231
|
|
LINXY(__NR_listxattr, sys_listxattr), // 232
|
|
LINXY(__NR_llistxattr, sys_llistxattr), // 233
|
|
LINXY(__NR_flistxattr, sys_flistxattr), // 234
|
|
|
|
LINX_(__NR_removexattr, sys_removexattr), // 235
|
|
LINX_(__NR_lremovexattr, sys_lremovexattr), // 236
|
|
LINX_(__NR_fremovexattr, sys_fremovexattr), // 237
|
|
LINXY(__NR_tkill, sys_tkill), // 238 */Linux
|
|
LINXY(__NR_sendfile64, sys_sendfile64), // 239
|
|
|
|
LINXY(__NR_futex, sys_futex), // 240
|
|
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 241
|
|
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 242
|
|
PLAX_(__NR_set_thread_area, sys_set_thread_area), // 243
|
|
PLAX_(__NR_get_thread_area, sys_get_thread_area), // 244
|
|
|
|
LINXY(__NR_io_setup, sys_io_setup), // 245
|
|
LINX_(__NR_io_destroy, sys_io_destroy), // 246
|
|
LINXY(__NR_io_getevents, sys_io_getevents), // 247
|
|
LINX_(__NR_io_submit, sys_io_submit), // 248
|
|
LINXY(__NR_io_cancel, sys_io_cancel), // 249
|
|
|
|
LINX_(__NR_fadvise64, sys_fadvise64), // 250 */(Linux?)
|
|
GENX_(251, sys_ni_syscall), // 251
|
|
LINX_(__NR_exit_group, sys_exit_group), // 252
|
|
LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 253
|
|
LINXY(__NR_epoll_create, sys_epoll_create), // 254
|
|
|
|
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 255
|
|
LINXY(__NR_epoll_wait, sys_epoll_wait), // 256
|
|
//zz // (__NR_remap_file_pages, sys_remap_file_pages), // 257 */Linux
|
|
LINX_(__NR_set_tid_address, sys_set_tid_address), // 258
|
|
LINXY(__NR_timer_create, sys_timer_create), // 259
|
|
|
|
LINXY(__NR_timer_settime, sys_timer_settime), // (timer_create+1)
|
|
LINXY(__NR_timer_gettime, sys_timer_gettime), // (timer_create+2)
|
|
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun),//(timer_create+3)
|
|
LINX_(__NR_timer_delete, sys_timer_delete), // (timer_create+4)
|
|
LINX_(__NR_clock_settime, sys_clock_settime), // (timer_create+5)
|
|
|
|
LINXY(__NR_clock_gettime, sys_clock_gettime), // (timer_create+6)
|
|
LINXY(__NR_clock_getres, sys_clock_getres), // (timer_create+7)
|
|
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// (timer_create+8) */*
|
|
GENXY(__NR_statfs64, sys_statfs64), // 268
|
|
GENXY(__NR_fstatfs64, sys_fstatfs64), // 269
|
|
|
|
LINX_(__NR_tgkill, sys_tgkill), // 270 */Linux
|
|
GENX_(__NR_utimes, sys_utimes), // 271
|
|
LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 272 */(Linux?)
|
|
GENX_(__NR_vserver, sys_ni_syscall), // 273
|
|
LINX_(__NR_mbind, sys_mbind), // 274 ?/?
|
|
|
|
LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 275 ?/?
|
|
LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 276 ?/?
|
|
LINXY(__NR_mq_open, sys_mq_open), // 277
|
|
LINX_(__NR_mq_unlink, sys_mq_unlink), // (mq_open+1)
|
|
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // (mq_open+2)
|
|
|
|
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// (mq_open+3)
|
|
LINX_(__NR_mq_notify, sys_mq_notify), // (mq_open+4)
|
|
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // (mq_open+5)
|
|
GENX_(__NR_sys_kexec_load, sys_ni_syscall), // 283
|
|
LINXY(__NR_waitid, sys_waitid), // 284
|
|
|
|
GENX_(285, sys_ni_syscall), // 285
|
|
LINX_(__NR_add_key, sys_add_key), // 286
|
|
LINX_(__NR_request_key, sys_request_key), // 287
|
|
LINXY(__NR_keyctl, sys_keyctl), // 288
|
|
LINX_(__NR_ioprio_set, sys_ioprio_set), // 289
|
|
|
|
LINX_(__NR_ioprio_get, sys_ioprio_get), // 290
|
|
LINX_(__NR_inotify_init, sys_inotify_init), // 291
|
|
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 292
|
|
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 293
|
|
// LINX_(__NR_migrate_pages, sys_migrate_pages), // 294
|
|
|
|
LINXY(__NR_openat, sys_openat), // 295
|
|
LINX_(__NR_mkdirat, sys_mkdirat), // 296
|
|
LINX_(__NR_mknodat, sys_mknodat), // 297
|
|
LINX_(__NR_fchownat, sys_fchownat), // 298
|
|
LINX_(__NR_futimesat, sys_futimesat), // 299
|
|
|
|
PLAXY(__NR_fstatat64, sys_fstatat64), // 300
|
|
LINX_(__NR_unlinkat, sys_unlinkat), // 301
|
|
LINX_(__NR_renameat, sys_renameat), // 302
|
|
LINX_(__NR_linkat, sys_linkat), // 303
|
|
LINX_(__NR_symlinkat, sys_symlinkat), // 304
|
|
|
|
LINX_(__NR_readlinkat, sys_readlinkat), // 305
|
|
LINX_(__NR_fchmodat, sys_fchmodat), // 306
|
|
LINX_(__NR_faccessat, sys_faccessat), // 307
|
|
LINX_(__NR_pselect6, sys_pselect6), // 308
|
|
LINXY(__NR_ppoll, sys_ppoll), // 309
|
|
|
|
// LINX_(__NR_unshare, sys_unshare), // 310
|
|
LINX_(__NR_set_robust_list, sys_set_robust_list), // 311
|
|
LINXY(__NR_get_robust_list, sys_get_robust_list), // 312
|
|
LINX_(__NR_splice, sys_splice), // 313
|
|
LINX_(__NR_sync_file_range, sys_sync_file_range), // 314
|
|
|
|
LINX_(__NR_tee, sys_tee), // 315
|
|
LINXY(__NR_vmsplice, sys_vmsplice), // 316
|
|
LINXY(__NR_move_pages, sys_move_pages), // 317
|
|
LINXY(__NR_getcpu, sys_getcpu), // 318
|
|
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 319
|
|
|
|
LINX_(__NR_utimensat, sys_utimensat), // 320
|
|
LINXY(__NR_signalfd, sys_signalfd), // 321
|
|
LINXY(__NR_timerfd_create, sys_timerfd_create), // 322
|
|
LINXY(__NR_eventfd, sys_eventfd), // 323
|
|
LINX_(__NR_fallocate, sys_fallocate), // 324
|
|
|
|
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 325
|
|
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 326
|
|
LINXY(__NR_signalfd4, sys_signalfd4), // 327
|
|
LINXY(__NR_eventfd2, sys_eventfd2), // 328
|
|
LINXY(__NR_epoll_create1, sys_epoll_create1), // 329
|
|
|
|
LINXY(__NR_dup3, sys_dup3), // 330
|
|
LINXY(__NR_pipe2, sys_pipe2), // 331
|
|
LINXY(__NR_inotify_init1, sys_inotify_init1), // 332
|
|
LINXY(__NR_preadv, sys_preadv), // 333
|
|
LINX_(__NR_pwritev, sys_pwritev), // 334
|
|
|
|
LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 335
|
|
LINXY(__NR_perf_event_open, sys_perf_event_open), // 336
|
|
LINXY(__NR_recvmmsg, sys_recvmmsg), // 337
|
|
LINXY(__NR_fanotify_init, sys_fanotify_init), // 338
|
|
LINX_(__NR_fanotify_mark, sys_fanotify_mark), // 339
|
|
|
|
LINXY(__NR_prlimit64, sys_prlimit64), // 340
|
|
LINXY(__NR_name_to_handle_at, sys_name_to_handle_at),// 341
|
|
LINXY(__NR_open_by_handle_at, sys_open_by_handle_at),// 342
|
|
LINXY(__NR_clock_adjtime, sys_clock_adjtime), // 343
|
|
// LINX_(__NR_syncfs, sys_ni_syscall), // 344
|
|
|
|
LINXY(__NR_sendmmsg, sys_sendmmsg), // 345
|
|
// LINX_(__NR_setns, sys_ni_syscall), // 346
|
|
LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 347
|
|
LINX_(__NR_process_vm_writev, sys_process_vm_writev) // 348
|
|
};
|
|
|
|
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
|
|
{
|
|
const UInt syscall_table_size
|
|
= sizeof(syscall_table) / sizeof(syscall_table[0]);
|
|
|
|
/* Is it in the contiguous initial section of the table? */
|
|
if (sysno < syscall_table_size) {
|
|
SyscallTableEntry* sys = &syscall_table[sysno];
|
|
if (sys->before == NULL)
|
|
return NULL; /* no entry */
|
|
else
|
|
return sys;
|
|
}
|
|
|
|
/* Can't find a wrapper */
|
|
return NULL;
|
|
}
|
|
|
|
#endif // defined(VGP_x86_linux)
|
|
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- end ---*/
|
|
/*--------------------------------------------------------------------*/
|