ftmemsim-valgrind/coregrind/m_syswrap/syswrap-x86-freebsd.c

1597 lines
54 KiB
C

/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-x86-freebsd.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2008 Nicholas Nethercote
njn@valgrind.org
Copyright (C) 2018-2021 Paul Floyd
pjfloyd@wanadoo.fr
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_x86_freebsd)
/* TODO/FIXME jrs 20050207: assignments to the syscall return result
in interrupted_syscall() need to be reviewed. They don't seem
to assign the shadow state.
*/
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_machine.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_stacks.h" // VG_(register_stack)
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-freebsd.h" /* for decls of linux-ish wrappers */
#include "priv_syswrap-main.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.*/
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1) ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
// 4(%esp) == stack
// 8(%esp) == retaddr
// 12(%esp) == f
// 16(%esp) == arg1
__asm__(
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" movl %esp, %esi\n" // remember old stack pointer
" movl 4(%esi), %esp\n" // set stack
" pushl 16(%esi)\n" // arg1 to stack
" pushl 8(%esi)\n" // retaddr to stack
" pushl 12(%esi)\n" // f to stack
" movl $0, %eax\n" // zero all GP regs
" movl $0, %ebx\n"
" movl $0, %ecx\n"
" movl $0, %edx\n"
" movl $0, %esi\n"
" movl $0, %edi\n"
" movl $0, %ebp\n"
" ret\n" // jump to f
" ud2\n" // should never get here
".previous\n"
);
#if 0
/*
Perform a rfork system call. rfork is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
int (fn)(void*) in 0+FSZ(%esp)
void* child_stack in 4+FSZ(%esp)
int flags in 8+FSZ(%esp)
void* arg in 12+FSZ(%esp)
pid_t* child_tid in 16+FSZ(%esp)
pid_t* parent_tid in 20+FSZ(%esp)
void* tls_ptr in 24+FSZ(%esp)
System call requires:
int $__NR_clone in %eax
int flags in %ebx
void* child_stack in %ecx
pid_t* parent_tid in %edx
pid_t* child_tid in %edi
void* tls_ptr in %esi
Returns an Int encoded in the linux-x86 way, not a SysRes.
*/
#define FSZ "4+4+4+4" /* frame size = retaddr+ebx+edi+esi */
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
extern
Int do_syscall_clone_x86_freebsd ( Word (*fn)(void *),
void* stack,
Int flags,
void* arg,
Int* child_tid,
Int* parent_tid,
vki_modify_ldt_t * );
asm(
".text\n"
"do_syscall_clone_x86_freebsd:\n"
" push %ebx\n"
" push %edi\n"
" push %esi\n"
/* set up child stack with function and arg */
" movl 4+"FSZ"(%esp), %ecx\n" /* syscall arg2: child stack */
" movl 12+"FSZ"(%esp), %ebx\n" /* fn arg */
" movl 0+"FSZ"(%esp), %eax\n" /* fn */
" lea -8(%ecx), %ecx\n" /* make space on stack */
" movl %ebx, 4(%ecx)\n" /* fn arg */
" movl %eax, 0(%ecx)\n" /* fn */
/* get other args to clone */
" movl 8+"FSZ"(%esp), %ebx\n" /* syscall arg1: flags */
" movl 20+"FSZ"(%esp), %edx\n" /* syscall arg3: parent tid * */
" movl 16+"FSZ"(%esp), %edi\n" /* syscall arg5: child tid * */
" movl 24+"FSZ"(%esp), %esi\n" /* syscall arg4: tls_ptr * */
" movl $"__NR_CLONE", %eax\n"
" int $0x80\n" /* clone() */
" testl %eax, %eax\n" /* child if retval == 0 */
" jnz 1f\n"
/* CHILD - call thread function */
" popl %eax\n"
" call *%eax\n" /* call fn */
/* exit with result */
" movl %eax, %ebx\n" /* arg1: return value from fn */
" movl $"__NR_EXIT", %eax\n"
" int $0x80\n"
/* Hm, exit returned */
" ud2\n"
"1:\n" /* PARENT or ERROR */
" pop %esi\n"
" pop %edi\n"
" pop %ebx\n"
" ret\n"
".previous\n"
);
#undef FSZ
#undef __NR_CLONE
#undef __NR_EXIT
// forward declarations
static void setup_child ( ThreadArchState*, ThreadArchState*, Bool );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for EIP, and a separate stack
for ESP.
*/
static SysRes do_rfork ( ThreadId ptid,
UInt flags)
{
static const Bool debug = False;
Addr esp;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UWord* stack;
NSegment const* seg;
SysRes res;
Int eax;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = (UWord*)ML_(allocstack)(ctid);
if (stack == NULL) {
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
goto out;
}
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL esp for the new thread, then
it actually gets a copy of the parent's esp.
*/
/* Note: the clone call done by the Quadrics Elan3 driver specifies
clone flags of 0xF00, and it seems to rely on the assumption
that the child inherits a copy of the parent's GDT.
setup_child takes care of setting that up. */
setup_child( &ctst->arch, &ptst->arch, True );
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_EAX = 0;
/* Assume linuxthreads port storing its intended stack in %esi */
esp = ctst->arch.vex.guest_ESI;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* We don't really know where the client stack is, because its
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
seg = VG_(am_find_nsegment)((Addr)esp);
if (seg && seg->kind != SkResvn) {
ctst->client_stack_highest_byte = (Addr)VG_PGROUNDUP(esp);
ctst->client_stack_szB = ctst->client_stack_highest_byte - seg->start;
ctst->os_state.stk_id = VG_(register_stack)(seg->start, ctst->client_stack_highest_byte);
if (debug)
VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n",
ctid, seg->start, VG_PGROUNDUP(esp));
} else {
VG_(message)(Vg_UserMsg, "!? New thread %d starts with ESP(%#lx) unmapped\n",
ctid, esp);
ctst->client_stack_szB = 0;
}
/* Assume the clone will succeed, and tell any tool that wants to
know that this thread has come into existence. We cannot defer
it beyond this point because sys_set_thread_area, just below,
causes tCheck to assert by making references to the new ThreadId
if we don't state the new thread exists prior to that point.
If the clone fails, we'll send out a ll_exit notification for it
at the out: label below, to clean up. */
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
/* XXX need to see what happens with tids etc with rfork */
eax = do_syscall_clone_x86_freebsd(
ML_(start_thread_NORETURN), stack, flags /*, &VG_(threads)[ctid], NULL*/ );
res = VG_(mk_SysRes_x86_freebsd)( eax ); /* XXX edx returns too! */
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (res.isError) {
/* clone failed */
VG_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
/* oops. Better tell the tool the thread exited in a hurry :-) */
VG_TRACK( pre_thread_ll_exit, ctid );
}
return res;
}
#endif
/* Translate a struct modify_ldt_ldt_s to a VexGuestX86SegDescr */
static
void translate_to_hw_format( /* IN */ void* base,
/* OUT */ VexGuestX86SegDescr* out)
{
UInt entry_1, entry_2;
UInt base_addr = (UInt) base;
vg_assert(8 == sizeof(VexGuestX86SegDescr));
if (0) {
VG_(printf)("translate_to_hw_format: base %p\n", base );
}
/* Allow LDTs to be cleared by the user. */
if (base == 0) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
/* base as specified, no limit, read/write/accessed etc */
entry_1 = ((base_addr & 0x0000ffff) << 16) | 0x0ffff;
entry_2 = (base_addr & 0xff000000) |
((base_addr & 0x00ff0000) >> 16) | 0x00cff300;
/* Install the new entry ... */
install:
out->LdtEnt.Words.word1 = entry_1;
out->LdtEnt.Words.word2 = entry_2;
}
/* Create a zeroed-out GDT. */
static VexGuestX86SegDescr* alloc_zeroed_x86_GDT ( void )
{
Int nbytes = VEX_GUEST_X86_GDT_NENT * sizeof(VexGuestX86SegDescr);
return VG_(arena_calloc)(VG_AR_CORE, "di.syswrap-x86.azxG.1", nbytes, 1);
}
/* Create a zeroed-out LDT. */
static VexGuestX86SegDescr* alloc_zeroed_x86_LDT ( void )
{
Int nbytes = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
return VG_(arena_calloc)(VG_AR_CORE, "di.syswrap-x86.azxL.1", nbytes, 1);
}
/* Free up an LDT or GDT allocated by the above fns. */
static void free_LDT_or_GDT ( VexGuestX86SegDescr* dt )
{
vg_assert(dt);
VG_(arena_free)(VG_AR_CORE, (void*)dt);
}
/* Copy contents between two existing LDTs. */
static void copy_LDT_from_to ( VexGuestX86SegDescr* src,
VexGuestX86SegDescr* dst )
{
Int i;
vg_assert(src);
vg_assert(dst);
for (i = 0; i < VEX_GUEST_X86_LDT_NENT; i++) {
dst[i] = src[i];
}
}
/* Copy contents between two existing GDTs. */
static void copy_GDT_from_to ( VexGuestX86SegDescr* src,
VexGuestX86SegDescr* dst )
{
Int i;
vg_assert(src);
vg_assert(dst);
for (i = 0; i < VEX_GUEST_X86_GDT_NENT; i++) {
dst[i] = src[i];
}
}
/* Free this thread's DTs, if it has any. */
static void deallocate_LGDTs_for_thread ( VexGuestX86State* vex )
{
vg_assert(sizeof(HWord) == sizeof(void*));
if (0) {
VG_(printf)("deallocate_LGDTs_for_thread: "
"ldt = 0x%llx, gdt = 0x%llx\n",
vex->guest_LDT, vex->guest_GDT );
}
if (vex->guest_LDT != (HWord)NULL) {
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_LDT );
vex->guest_LDT = (HWord)NULL;
}
if (vex->guest_GDT != (HWord)NULL) {
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_GDT );
vex->guest_GDT = (HWord)NULL;
}
}
static SysRes sys_set_thread_area ( ThreadId tid, Int *idxptr, void *base)
{
VexGuestX86SegDescr* gdt;
Int idx;
vg_assert(8 == sizeof(VexGuestX86SegDescr));
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
/* If the thread doesn't have a GDT, allocate it now. */
if (!gdt) {
gdt = alloc_zeroed_x86_GDT();
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
}
idx = *idxptr;
if (idx == -1) {
/* Find and use the first free entry. Don't allocate entry
zero, because the hardware will never do that, and apparently
doing so confuses some code (perhaps stuff running on
Wine). */
for (idx = 1; idx < VEX_GUEST_X86_GDT_NENT; idx++) {
if (gdt[idx].LdtEnt.Words.word1 == 0
&& gdt[idx].LdtEnt.Words.word2 == 0) {
break;
}
}
if (idx == VEX_GUEST_X86_GDT_NENT) {
return VG_(mk_SysRes_Error)( VKI_ESRCH );
}
} else if (idx < 0 || idx == 0 || idx >= VEX_GUEST_X86_GDT_NENT) {
/* Similarly, reject attempts to use GDT[0]. */
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
translate_to_hw_format(base, &gdt[idx]);
*idxptr = idx;
return VG_(mk_SysRes_Success)( 0 );
}
static SysRes sys_get_thread_area ( ThreadId tid, Int idx, void ** basep )
{
VexGuestX86SegDescr* gdt;
UInt base;
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
vg_assert(8 == sizeof(VexGuestX86SegDescr));
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
/* If the thread doesn't have a GDT, allocate it now. */
if (!gdt) {
gdt = alloc_zeroed_x86_GDT();
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
}
base = ( gdt[idx].LdtEnt.Bits.BaseHi << 24 ) |
( gdt[idx].LdtEnt.Bits.BaseMid << 16 ) |
gdt[idx].LdtEnt.Bits.BaseLow;
*basep = (void *)base;
return VG_(mk_SysRes_Success)( 0 );
}
static
void x86_setup_LDT_GDT ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
/* We inherit our parent's LDT. */
if (parent->vex.guest_LDT == (HWord)NULL) {
/* We hope this is the common case. */
child->vex.guest_LDT = (HWord)NULL;
} else {
/* No luck .. we have to take a copy of the parent's. */
child->vex.guest_LDT = (HWord)alloc_zeroed_x86_LDT();
copy_LDT_from_to( (VexGuestX86SegDescr*)(HWord)parent->vex.guest_LDT,
(VexGuestX86SegDescr*)(HWord)child->vex.guest_LDT );
}
/* Either we start with an empty GDT (the usual case) or inherit a
copy of our parents' one (Quadrics Elan3 driver -style clone
only). */
child->vex.guest_GDT = (HWord)NULL;
if (parent->vex.guest_GDT != (HWord)NULL) {
//child->vex.guest_GDT = (HWord)alloc_system_x86_GDT();
child->vex.guest_GDT = (HWord)alloc_zeroed_x86_GDT();
copy_GDT_from_to( (VexGuestX86SegDescr*)(HWord)parent->vex.guest_GDT,
(VexGuestX86SegDescr*)(HWord)child->vex.guest_GDT );
}
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
void VG_(cleanup_thread) ( ThreadArchState* arch )
{
/*
* This is what x86 Linux does but it doesn't work off the bat for x86 FreeBSD
* My suspicion is that the rtld code uses the TCB stored in the GDT after the
* end of thr_exit.
* Alternatively the rtld use is after the start of the next thread and we haven't
* reallocated this memory
*/
deallocate_LGDTs_for_thread( &arch->vex );
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for x86/FreeBSD-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(freebsd, name)
#define POST(name) DEFN_POST_TEMPLATE(freebsd, name)
// SYS_sysarch 165
// int sysarch(int number, void *args);
PRE(sys_sysarch)
{
ThreadState *tst;
Int idx;
void **p;
PRINT("sys_sysarch ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x )", ARG1, ARG2);
PRE_REG_READ2(int, "sysarch", int, number, void *, args);
switch (ARG1) {
case VKI_I386_SET_GSBASE:
PRINT("sys_i386_set_gsbase ( %#lx )", ARG2);
if (ML_(safe_to_deref)((void**)ARG2, sizeof(void*))) {
/* On FreeBSD, the syscall loads the %gs selector for us, so do it now. */
tst = VG_(get_ThreadState)(tid);
p = (void**)ARG2;
tst->arch.vex.guest_GS = (1 << 3) | 3; /* GSEL(GUGS_SEL, SEL_UPL) */
/* "do" the syscall ourselves; the kernel never sees it */
idx = 1;
SET_STATUS_from_SysRes( sys_set_thread_area( tid, &idx, *p ) );
} else {
// ????
SET_STATUS_Failure( VKI_EINVAL );
}
break;
case VKI_I386_GET_GSBASE:
PRINT("sys_i386_get_gsbase ( %#lx )", ARG2);
PRE_MEM_WRITE( "i386_get_gsbase(basep)", ARG2, sizeof(void *) );
if (ML_(safe_to_deref)((void**)ARG2, sizeof(void*))) {
/* "do" the syscall ourselves; the kernel never sees it */
SET_STATUS_from_SysRes( sys_get_thread_area( tid, 2, (void **)ARG2 ) );
} else {
SET_STATUS_Failure( VKI_EINVAL );
}
break;
case VKI_I386_GET_XFPUSTATE:
PRINT("sys_i386_get_xfpustate ( %#lx )", ARG2);
PRE_MEM_WRITE( "i386_get_xfpustate(basep)", ARG2, sizeof(void *) );
/* "do" the syscall ourselves; the kernel never sees it */
tst = VG_(get_ThreadState)(tid);
SET_STATUS_Success2( tst->arch.vex.guest_FPTAG[0], tst->arch.vex.guest_FPTAG[0] );
break;
default:
VG_(message) (Vg_UserMsg, "unhandled sysarch cmd %lu", ARG1);
VG_(unimplemented) ("unhandled sysarch cmd");
break;
}
}
POST(sys_sysarch)
{
switch (ARG1) {
case VKI_AMD64_SET_FSBASE:
break;
case VKI_AMD64_GET_FSBASE:
POST_MEM_WRITE( ARG2, sizeof(void *) );
break;
case VKI_AMD64_GET_XFPUSTATE:
POST_MEM_WRITE( ARG2, sizeof(void *) );
break;
default:
break;
}
}
// freebsd6_pread 173
#if (FREEBSD_VERS <= FREEBSD_10)
PRE(sys_freebsd6_pread)
{
*flags |= SfMayBlock;
PRINT("sys_freebsd6_pread ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u )", ARG1, ARG2, ARG3, ARG5, ARG6);
PRE_REG_READ6(ssize_t, "pread",
unsigned int, fd, char *, buf, vki_size_t, count,
int, pad, unsigned int, off_low, unsigned int, off_high);
if (!ML_(fd_allowed)(ARG1, "freebsd6_pread", tid, False))
SET_STATUS_Failure( VKI_EBADF );
else
PRE_MEM_WRITE( "freebsd6_pread(buf)", ARG2, ARG3 );
}
POST(sys_freebsd6_pread)
{
vg_assert(SUCCESS);
POST_MEM_WRITE( ARG2, RES );
}
#endif
// freebsd6_pwrite 174
#if (FREEBSD_VERS <= FREEBSD_10)
PRE(sys_freebsd6_pwrite)
{
Bool ok;
*flags |= SfMayBlock;
PRINT("sys_freebsd6_pwrite ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u )", ARG1, ARG2, ARG3, ARG5, ARG6);
PRE_REG_READ6(ssize_t, "freebsd6_pwrite",
unsigned int, fd, const char *, buf, vki_size_t, count,
int, pad, unsigned int, off_low, unsigned int, off_high);
/* check to see if it is allowed. If not, try for an exemption from
--sim-hints=enable-outer (used for self hosting). */
ok = ML_(fd_allowed)(ARG1, "freebsd6_pwrite", tid, False);
if (!ok && ARG1 == 2/*stderr*/
&& SimHintiS(SimHint_enable_outer, VG_(clo_sim_hints)))
ok = True;
if (!ok)
SET_STATUS_Failure( VKI_EBADF );
else
PRE_MEM_READ( "freebsd6_write(buf)", ARG2, ARG3 );
}
#endif
// SYS_freebsd6_mmap 197
#if (FREEBSD_VERS <= FREEBSD_10)
/* This is here because on x86 the off_t is passed in 2 regs. Don't ask about pad. */
/* caddr_t mmap(caddr_t addr, size_t len, int prot, int flags, int fd, int pad, off_t pos); */
/* ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7+ARG8 */
PRE(sys_freebsd6_mmap)
{
SysRes r;
PRINT("sys_freebsd6_mmap ( %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u, pad%" FMT_REGWORD "u, lo0x%" FMT_REGWORD "x hi0x%" FMT_REGWORD "x)",
ARG1, (UWord)ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8 );
PRE_REG_READ8(long, "mmap",
char *, addr, unsigned long, len, int, prot, int, flags,
int, fd, int, pad, unsigned long, lo, unsigned long, hi);
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, MERGE64(ARG7,ARG8) );
SET_STATUS_from_SysRes(r);
}
#endif
// freebsd6_lseek 199
#if (FREEBSD_VERS <= FREEBSD_10)
PRE(sys_freebsd6_lseek)
{
PRINT("sys_freebsd6_lseek ( %" FMT_REGWORD "u, 0x%" FMT_REGWORD "x, 0x%" FMT_REGWORD "x, %" FMT_REGWORD "u )", ARG1,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "lseek",
unsigned int, fd, int, pad, unsigned int, offset_low,
unsigned int, offset_high, unsigned int, whence);
}
#endif
// freebsd6_truncate 200
#if (FREEBSD_VERS <= FREEBSD_10)
PRE(sys_freebsd6_truncate)
{
*flags |= SfMayBlock;
PRINT("sys_truncate ( %#" FMT_REGWORD "x(%s), %" FMT_REGWORD "u, %" FMT_REGWORD "u )", ARG1,(char *)ARG1,ARG3,ARG4);
PRE_REG_READ4(long, "truncate",
const char *, path, int, pad,
unsigned int, length_low, unsigned int, length_high);
PRE_MEM_RASCIIZ( "truncate(path)", ARG1 );
}
#endif
// freebsd6_ftruncate 201
#if (FREEBSD_VERS <= FREEBSD_10)
PRE(sys_freebsd6_ftruncate)
{
*flags |= SfMayBlock;
PRINT("sys_ftruncate ( %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u )", ARG1,ARG3,ARG4);
PRE_REG_READ4(long, "ftruncate", unsigned int, fd, int, pad,
unsigned int, length_low, unsigned int, length_high);
}
#endif
// SYS_clock_getcpuclockid2 247
// no manpage for this, from syscalls.master
// int clock_getcpuclockid2(id_t id, int which, _Out_ clockid_t *clock_id);
PRE(sys_clock_getcpuclockid2)
{
PRINT("sys_clock_getcpuclockid2( %lld, %" FMT_REGWORD "d, %#" FMT_REGWORD "x )",
(vki_id_t)MERGE64(ARG1,ARG2),SARG3,ARG4);
PRE_REG_READ4(int, "clock_getcpuclockid2",
vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset),
int, len, clockid_t *, clock_id);
PRE_MEM_WRITE("clock_getcpuclockid2(clock_id)", ARG3, sizeof(vki_clockid_t));
}
// SYS_rfork 251
// pid_t rfork(int flags);
PRE(sys_rfork)
{
PRINT("sys_rfork ( %" FMT_REGWORD "x )",ARG1);
PRE_REG_READ1(int, "rfork",
unsigned int, flags);
#if 0
cloneflags = ARG1;
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
SET_STATUS_from_SysRes( do_clone(tid, ARG1));
if (SUCCESS) {
*flags |= SfYieldAfter;
}
#else
VG_(message)(Vg_UserMsg, "rfork() not implemented\n");
if ((UInt)ARG1 == VKI_RFSPAWN) {
// posix_spawn uses RFSPAWN and it will fall back to vfork
// if it sees EINVAL
SET_STATUS_Failure(VKI_EINVAL);
} else {
SET_STATUS_Failure(VKI_ENOSYS);
}
#endif
}
// SYS_preadv 289
// ssize_t preadv(int fd, const struct iovec *iov, int iovcnt, off_t offset);
PRE(sys_preadv)
{
Int i;
struct vki_iovec * vec;
*flags |= SfMayBlock;
PRINT("sys_preadv ( %" FMT_REGWORD "d, %#" FMT_REGWORD "x, %"
FMT_REGWORD "d, %llu )", SARG1, ARG2, SARG3, MERGE64(ARG4,ARG5));
PRE_REG_READ5(ssize_t, "preadv",
int, fd, const struct iovec *, iov,
int, iovcnt, vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset));
if (!ML_(fd_allowed)(ARG1, "preadv", tid, False)) {
SET_STATUS_Failure( VKI_EBADF );
} else {
if ((Int)ARG3 > 0)
PRE_MEM_READ( "preadv(iov)", ARG2, ARG3 * sizeof(struct vki_iovec) );
if (ML_(safe_to_deref)((struct vki_iovec *)ARG2, ARG3 * sizeof(struct vki_iovec))) {
vec = (struct vki_iovec *)(Addr)ARG2;
for (i = 0; i < (Int)ARG3; i++)
PRE_MEM_WRITE( "preadv(iov[...])",
(Addr)vec[i].iov_base, vec[i].iov_len );
}
}
}
POST(sys_preadv)
{
vg_assert(SUCCESS);
if (RES > 0) {
Int i;
struct vki_iovec * vec = (struct vki_iovec *)(Addr)ARG2;
Int remains = RES;
/* RES holds the number of bytes read. */
for (i = 0; i < (Int)ARG3; i++) {
Int nReadThisBuf = vec[i].iov_len;
if (nReadThisBuf > remains) nReadThisBuf = remains;
POST_MEM_WRITE( (Addr)vec[i].iov_base, nReadThisBuf );
remains -= nReadThisBuf;
if (remains < 0) VG_(core_panic)("preadv: remains < 0");
}
}
}
// SYS_pwritev 290
// ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt, off_t offset);
PRE(sys_pwritev)
{
Int i;
struct vki_iovec * vec;
*flags |= SfMayBlock;
PRINT("sys_pwritev ( %" FMT_REGWORD "d, %#" FMT_REGWORD "x, %"
FMT_REGWORD "d, %llu )", SARG1, ARG2, SARG3, MERGE64(ARG4,ARG5));
PRE_REG_READ5(ssize_t, "pwritev",
int, fd, const struct iovec *, iov,
int, iovcnt,
vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset));
if (!ML_(fd_allowed)(ARG1, "pwritev", tid, False)) {
SET_STATUS_Failure( VKI_EBADF );
} else {
if ((Int)ARG3 >= 0)
PRE_MEM_READ( "pwritev(vector)", ARG2, ARG3 * sizeof(struct vki_iovec) );
if (ML_(safe_to_deref)((struct vki_iovec *)ARG2, ARG3 * sizeof(struct vki_iovec))) {
vec = (struct vki_iovec *)(Addr)ARG2;
for (i = 0; i < (Int)ARG3; i++)
PRE_MEM_READ( "pwritev(iov[...])",
(Addr)vec[i].iov_base, vec[i].iov_len );
}
}
}
// SYS_sendfile 393
// int sendfile(int fd, int s, off_t offset, size_t nbytes,
// struct sf_hdtr *hdtr, off_t *sbytes, int flags);
PRE(sys_sendfile)
{
*flags |= SfMayBlock;
PRINT("sys_sendfile ( %" FMT_REGWORD "d, %" FMT_REGWORD "d, %llu, %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %#" FMT_REGWORD "x, %" FMT_REGWORD "d )",
SARG1,SARG2,LOHI64(ARG3,ARG4),ARG5,ARG6,ARG7,SARG8);
PRE_REG_READ8(int, "sendfile",
int, fd, int, s, unsigned int, offset_low,
unsigned int, offset_high, size_t, nbytes,
void *, hdtr, vki_off_t *, sbytes, int, flags);
if (ARG6 != 0)
PRE_MEM_READ("sendfile(hdtr)", ARG6, sizeof(struct vki_sf_hdtr));
if (ARG7 != 0)
PRE_MEM_WRITE( "sendfile(sbytes)", ARG7, sizeof(vki_off_t) );
}
POST(sys_sendfile)
{
if (ARG7 != 0 ) {
POST_MEM_WRITE( ARG7, sizeof( vki_off_t ) );
}
}
// SYS_sigreturn 417
// int sigreturn(const ucontext_t *scp);
PRE(sys_sigreturn)
{
PRINT("sys_sigreturn ( %#" FMT_REGWORD "x )", ARG1);
PRE_REG_READ1(int, "sigreturn",
struct vki_ucontext *, scp);
PRE_MEM_READ( "sigreturn(scp)", ARG1, sizeof(struct vki_ucontext) );
PRE_MEM_WRITE( "sigreturn(scp)", ARG1, sizeof(struct vki_ucontext) );
}
static void restore_mcontext(ThreadState *tst, struct vki_mcontext *sc)
{
tst->arch.vex.guest_EAX = sc->eax;
tst->arch.vex.guest_ECX = sc->ecx;
tst->arch.vex.guest_EDX = sc->edx;
tst->arch.vex.guest_EBX = sc->ebx;
tst->arch.vex.guest_EBP = sc->ebp;
tst->arch.vex.guest_ESP = sc->esp;
tst->arch.vex.guest_ESI = sc->esi;
tst->arch.vex.guest_EDI = sc->edi;
tst->arch.vex.guest_EIP = sc->eip;
tst->arch.vex.guest_CS = sc->cs;
tst->arch.vex.guest_SS = sc->ss;
tst->arch.vex.guest_DS = sc->ds;
tst->arch.vex.guest_ES = sc->es;
tst->arch.vex.guest_FS = sc->fs;
tst->arch.vex.guest_GS = sc->gs;
/*
* XXX: missing support for other flags.
*/
if (sc->eflags & 0x0001)
LibVEX_GuestX86_put_eflag_c(1, &tst->arch.vex);
else
LibVEX_GuestX86_put_eflag_c(0, &tst->arch.vex);
}
static void fill_mcontext(ThreadState *tst, struct vki_mcontext *sc)
{
sc->eax = tst->arch.vex.guest_EAX;
sc->ecx = tst->arch.vex.guest_ECX;
sc->edx = tst->arch.vex.guest_EDX;
sc->ebx = tst->arch.vex.guest_EBX;
sc->ebp = tst->arch.vex.guest_EBP;
sc->esp = tst->arch.vex.guest_ESP;
sc->esi = tst->arch.vex.guest_ESI;
sc->edi = tst->arch.vex.guest_EDI;
sc->eip = tst->arch.vex.guest_EIP;
sc->cs = tst->arch.vex.guest_CS;
sc->ss = tst->arch.vex.guest_SS;
sc->ds = tst->arch.vex.guest_DS;
sc->es = tst->arch.vex.guest_ES;
sc->fs = tst->arch.vex.guest_FS;
sc->gs = tst->arch.vex.guest_GS;
sc->eflags = LibVEX_GuestX86_get_eflags(&tst->arch.vex);
/*
not yet.
VG_(memcpy)(&sc->fpstate, fpstate, sizeof(*fpstate));
*/
sc->fpformat = VKI_FPFMT_NODEV;
sc->ownedfp = VKI_FPOWNED_NONE;
sc->len = sizeof(*sc);
VG_(memset)(sc->spare2, 0, sizeof(sc->spare2));
}
// SYS_getcontext 421
// int getcontext(ucontext_t *ucp);
PRE(sys_getcontext)
{
ThreadState* tst;
struct vki_ucontext *uc;
PRINT("sys_getcontext ( %#" FMT_REGWORD "x )", ARG1);
PRE_REG_READ1(int, "getcontext",
struct vki_ucontext *, ucp);
PRE_MEM_WRITE( "getcontext(ucp)", ARG1, sizeof(struct vki_ucontext) );
uc = (struct vki_ucontext *)ARG1;
if (!ML_(safe_to_deref)(uc, sizeof(struct vki_ucontext))) {
SET_STATUS_Failure(VKI_EINVAL);
return;
}
tst = VG_(get_ThreadState)(tid);
fill_mcontext(tst, &uc->uc_mcontext);
uc->uc_mcontext.eax = 0;
uc->uc_mcontext.edx = 0;
uc->uc_mcontext.eflags &= ~0x0001; /* PSL_C */
uc->uc_sigmask = tst->sig_mask;
VG_(memset)(uc->__spare__, 0, sizeof(uc->__spare__));
SET_STATUS_Success(0);
}
// SYS_setcontext 422
// int setcontext(const ucontext_t *ucp);
PRE(sys_setcontext)
{
ThreadState* tst;
struct vki_ucontext *uc;
PRINT("sys_setcontext ( %#" FMT_REGWORD "x )", ARG1);
PRE_REG_READ1(long, "setcontext",
struct vki_ucontext *, ucp);
PRE_MEM_READ( "setcontext(ucp)", ARG1, sizeof(struct vki_ucontext) );
PRE_MEM_WRITE( "setcontext(ucp)", ARG1, sizeof(struct vki_ucontext) );
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
tst = VG_(get_ThreadState)(tid);
uc = (struct vki_ucontext *)ARG1;
if (!ML_(safe_to_deref)(uc, sizeof(struct vki_ucontext)) || uc->uc_mcontext.len != sizeof(uc->uc_mcontext)) {
SET_STATUS_Failure(VKI_EINVAL);
return;
}
restore_mcontext(tst, &uc->uc_mcontext);
tst->sig_mask = uc->uc_sigmask;
tst->tmp_sig_mask = uc->uc_sigmask;
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if some any signals arose as a result of this. */
*flags |= SfPollAfter;
}
// SYS_swapcontext 423
// int swapcontext(ucontext_t *oucp, const ucontext_t *ucp);
PRE(sys_swapcontext)
{
struct vki_ucontext *ucp, *oucp;
ThreadState* tst;
PRINT("sys_swapcontext ( %#" FMT_REGWORD "x, %#" FMT_REGWORD "x )", ARG1, ARG2);
PRE_REG_READ2(long, "swapcontext",
struct vki_ucontext *, oucp, struct vki_ucontext *, ucp);
PRE_MEM_READ( "swapcontext(ucp)", ARG2, sizeof(struct vki_ucontext) );
PRE_MEM_WRITE( "swapcontext(oucp)", ARG1, sizeof(struct vki_ucontext) );
oucp = (struct vki_ucontext *)ARG1;
ucp = (struct vki_ucontext *)ARG2;
if (!ML_(safe_to_deref)(oucp, sizeof(struct vki_ucontext)) ||
!ML_(safe_to_deref)(ucp, sizeof(struct vki_ucontext)) ||
ucp->uc_mcontext.len != sizeof(ucp->uc_mcontext)) {
SET_STATUS_Failure(VKI_EINVAL);
return;
}
tst = VG_(get_ThreadState)(tid);
/*
* Save the context.
*/
fill_mcontext(tst, &oucp->uc_mcontext);
oucp->uc_mcontext.eax = 0;
oucp->uc_mcontext.edx = 0;
oucp->uc_mcontext.eflags &= ~0x0001; /* PSL_C */
oucp->uc_sigmask = tst->sig_mask;
VG_(memset)(oucp->__spare__, 0, sizeof(oucp->__spare__));
/*
* Switch to new one.
*/
restore_mcontext(tst, &ucp->uc_mcontext);
tst->sig_mask = ucp->uc_sigmask;
tst->tmp_sig_mask = ucp->uc_sigmask;
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if some any signals arose as a result of this. */
*flags |= SfPollAfter;
}
// SYS_thr_new 455
// int thr_new(struct thr_param *param, int param_size);
PRE(sys_thr_new)
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(tid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
SysRes res;
vki_sigset_t blockall, savedmask;
struct vki_thr_param tp;
Int idx = -1;
Addr stk;
PRINT("thr_new ( %#" FMT_REGWORD "x, %" FMT_REGWORD "u )",ARG1,ARG2);
PRE_REG_READ2(int, "thr_new",
struct thr_param *, param,
int, param_size);
PRE_MEM_READ( "thr_new(param)", ARG1, offsetof(struct vki_thr_param, spare));
if (!ML_(safe_to_deref)( (void*)ARG1, offsetof(struct vki_thr_param, spare))) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
VG_(memset)(&tp, 0, sizeof(tp));
VG_(memcpy)(&tp, (void *)ARG1, offsetof(struct vki_thr_param, spare));
PRE_MEM_WRITE("clone(parent_tidptr)", (Addr)tp.parent_tid, sizeof(long));
PRE_MEM_WRITE("clone(child_tidptr)", (Addr)tp.child_tid, sizeof(long));
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(tid));
vg_assert(VG_(is_valid_tid)(ctid));
/* Copy register state
On linux, both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
On FreeBSD, thr_new arranges a direct call. We don't actually need any
of this gunk.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL rsp for the new thread, then
it actually gets a copy of the parent's rsp.
*/
/* We inherit our parent's guest state. */
ctst->arch.vex = ptst->arch.vex;
ctst->arch.vex_shadow1 = ptst->arch.vex_shadow1;
ctst->arch.vex_shadow2 = ptst->arch.vex_shadow2;
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_EAX = 0;
ctst->arch.vex.guest_EDX = 0;
LibVEX_GuestX86_put_eflag_c(0, &ctst->arch.vex);
x86_setup_LDT_GDT(&ctst->arch, &ptst->arch);
ctst->os_state.parent = tid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* Linux has to guess, we don't */
ctst->client_stack_highest_byte = (Addr)tp.stack_base + tp.stack_size;
ctst->client_stack_szB = tp.stack_size;
ctst->os_state.stk_id = VG_(register_stack)((Addr)tp.stack_base, (Addr)tp.stack_base + tp.stack_size);
/* Assume the clone will succeed, and tell any tool that wants to
know that this thread has come into existence. If the clone
fails, we'll send out a ll_exit notification for it at the out:
label below, to clean up. */
VG_TRACK ( pre_thread_ll_create, tid, ctid );
if (debug)
VG_(printf)("clone child has SETTLS: tls at %#lx\n", (Addr)tp.tls_base);
sys_set_thread_area( ctid, &idx, tp.tls_base );
ctst->arch.vex.guest_GS = (idx << 3) | 3; /* GSEL(GUGS_SEL, SEL_UPL) */
tp.tls_base = 0; /* Don't have the kernel do it too */
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Set the client state for scheduler to run libthr's trampoline */
ctst->arch.vex.guest_ESP = (Addr)tp.stack_base + tp.stack_size - 8;
ctst->arch.vex.guest_EIP = (Addr)tp.start_func;
*(UWord *)(ctst->arch.vex.guest_ESP + 4) = (UWord)tp.arg; /* Client arg */
*(UWord *)(ctst->arch.vex.guest_ESP + 0) = 0; /* fake return addr */
/* Set up valgrind's trampoline on its own stack */
stk = ML_(allocstack)(ctid);
tp.stack_base = (void *)ctst->os_state.valgrind_stack_base;
tp.stack_size = (Addr)stk - (Addr)tp.stack_base;
/* This is for thr_new() to run valgrind's trampoline */
tp.start_func = (void *)ML_(start_thread_NORETURN);
tp.arg = &VG_(threads)[ctid];
/* Create the new thread */
res = VG_(do_syscall2)(__NR_thr_new, (UWord)&tp, sizeof(tp));
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
if (sr_isError(res)) {
/* clone failed */
VG_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
/* oops. Better tell the tool the thread exited in a hurry :-) */
VG_TRACK( pre_thread_ll_exit, ctid );
} else {
POST_MEM_WRITE((Addr)tp.parent_tid, sizeof(long));
POST_MEM_WRITE((Addr)tp.child_tid, sizeof(long));
POST_MEM_WRITE((Addr)ctst->arch.vex.guest_ESP, 8);
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
/* "Complete" the syscall so that the wrapper doesn't call the kernel again. */
SET_STATUS_from_SysRes(res);
}
// SYS_pread 475
// ssize_t pread(int fd, void *buf, size_t nbytes, off_t offset);
PRE(sys_pread)
{
*flags |= SfMayBlock;
PRINT("sys_pread ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u )", ARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(ssize_t, "pread",
unsigned int, fd, char *, buf, vki_size_t, count,
unsigned int, off_low, unsigned int, off_high);
if (!ML_(fd_allowed)(ARG1, "pread", tid, False))
SET_STATUS_Failure( VKI_EBADF );
else
PRE_MEM_WRITE( "pread(buf)", ARG2, ARG3 );
}
POST(sys_pread)
{
vg_assert(SUCCESS);
POST_MEM_WRITE( ARG2, RES );
}
// SYS_pwrite 476
// ssize_t pwrite(int fd, const void *buf, size_t nbytes, off_t offset);
PRE(sys_pwrite)
{
Bool ok;
*flags |= SfMayBlock;
PRINT("sys_pwrite ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %llu )", ARG1, ARG2, ARG3, MERGE64(ARG4, ARG5));
PRE_REG_READ5(ssize_t, "pwrite",
unsigned int, fd, const char *, buf, vki_size_t, count,
vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset));
/* check to see if it is allowed. If not, try for an exemption from
--sim-hints=enable-outer (used for self hosting). */
ok = ML_(fd_allowed)(ARG1, "pwrite", tid, False);
if (!ok && ARG1 == 2/*stderr*/
&& SimHintiS(SimHint_enable_outer, VG_(clo_sim_hints)))
ok = True;
if (!ok)
SET_STATUS_Failure( VKI_EBADF );
else
PRE_MEM_READ( "pwrite(buf)", ARG2, ARG3 );
}
// SYS_mmap 477
// void * mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
PRE(sys_mmap)
{
SysRes r;
PRINT("sys_mmap ( %#" FMT_REGWORD "x, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %" FMT_REGWORD "u, %llu )",
ARG1, (UWord)ARG2, ARG3, ARG4, ARG5, MERGE64(ARG6, ARG7) );
PRE_REG_READ7(void *, "mmap",
void *, addr, size_t, len, int, prot, int, flags, int, fd,
vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset));
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, MERGE64(ARG6,ARG7) );
SET_STATUS_from_SysRes(r);
}
// SYS_lseek 478
// off_t lseek(int fildes, off_t offset, int whence);
PRE(sys_lseek)
{
PRINT("sys_lseek ( %" FMT_REGWORD "d, %llu, %" FMT_REGWORD "d )", SARG1,MERGE64(ARG2,ARG3),SARG4);
PRE_REG_READ4(long, "lseek",
unsigned int, fd,
vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset),
unsigned int, whence);
}
// SYS_truncate 479
// int truncate(const char *path, off_t length);
PRE(sys_truncate)
{
*flags |= SfMayBlock;
PRINT("sys_truncate ( %#" FMT_REGWORD "x(%s), %llu )", ARG1,(char *)ARG1,MERGE64(ARG2,ARG3));
PRE_REG_READ3(long, "truncate",
const char *, path,
vki_uint32_t, MERGE64_FIRST(length),
vki_uint32_t, MERGE64_SECOND(length));
PRE_MEM_RASCIIZ( "truncate(path)", ARG1 );
}
// SYS_ftruncate 480
// int ftruncate(int fd, off_t length);
PRE(sys_ftruncate)
{
*flags |= SfMayBlock;
PRINT("sys_ftruncate ( %" FMT_REGWORD "d, %" FMT_REGWORD "u, %" FMT_REGWORD "u )", SARG1,ARG2,ARG3);
PRE_REG_READ3(int, "ftruncate", int, fd,
vki_uint32_t, MERGE64_FIRST(length),
vki_uint32_t, MERGE64_SECOND(length));
}
// SYS_cpuset_setid 485
// int cpuset_setid(cpuwhich_t which, id_t id, cpusetid_t setid);
PRE(sys_cpuset_setid)
{
PRINT("sys_cpuset_setid ( %" FMT_REGWORD "d, %llu, %#" FMT_REGWORD "x )",
SARG1, MERGE64(ARG2,ARG3), ARG4);
PRE_REG_READ4(int, "cpuset_setid", vki_cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
vki_cpusetid_t,setid);
}
// SYS_cpuset_getid 486
// int cpuset_getid(cpulevel_t level, cpuwhich_t which, id_t id,
// cpusetid_t *setid);
PRE(sys_cpuset_getid)
{
PRINT("sys_cpuset_getid ( %" FMT_REGWORD "d, %" FMT_REGWORD "d, %llu, %#" FMT_REGWORD "x )",
SARG1, SARG2, MERGE64(ARG3, ARG4), ARG5);
PRE_REG_READ5(int, "cpuset_getid", vki_cpulevel_t, level,
vki_cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
vki_cpusetid_t *,setid);
PRE_MEM_WRITE("cpuset_getid(setid)", ARG4, sizeof(vki_cpusetid_t));
}
POST(sys_cpuset_getid)
{
POST_MEM_WRITE(ARG5, sizeof(vki_cpusetid_t));
}
// SYS_cpuset_getaffinity 487
// int cpuset_getaffinity(cpulevel_t level, cpuwhich_t which, id_t id,
// size_t setsize, cpuset_t *mask);
PRE(sys_cpuset_getaffinity)
{
PRINT("sys_cpuset_getaffinity ( %" FMT_REGWORD "u, %" FMT_REGWORD "u, %lld, %" FMT_REGWORD "u, %#" FMT_REGWORD "x )",
ARG1, ARG2, (vki_id_t)MERGE64(ARG3, ARG4), ARG5, ARG6);
PRE_REG_READ6(int, "cpuset_getaffinity",
vki_cpulevel_t, level, vki_cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
size_t, setsize, void *, mask);
PRE_MEM_WRITE("cpuset_getaffinity", ARG6, ARG5);
}
POST(sys_cpuset_getaffinity)
{
vg_assert(SUCCESS);
if (RES == 0)
POST_MEM_WRITE( ARG6, ARG5 );
}
// SYS_cpuset_setaffinity 488
// int cpuset_setaffinity(cpulevel_t level, cpuwhich_t which, id_t id,
// size_t setsize, const cpuset_t *mask);
PRE(sys_cpuset_setaffinity)
{
PRINT("sys_cpuset_setaffinity ( %" FMT_REGWORD "u, %" FMT_REGWORD "u, %llu, %" FMT_REGWORD "u, %#" FMT_REGWORD "x )",
ARG1, ARG2, MERGE64(ARG3, ARG4), ARG5, ARG6);
PRE_REG_READ6(int, "cpuset_setaffinity",
vki_cpulevel_t, level, vki_cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
size_t, setsize, void *, mask);
PRE_MEM_READ("cpuset_setaffinity", ARG6, ARG5);
}
// SYS_posix_fallocate 530
// int posix_fallocate(int fd, off_t offset, off_t len);
PRE(sys_posix_fallocate)
{
PRINT("sys_posix_fallocate ( %" FMT_REGWORD "d, %llu, %llu )",
SARG1, MERGE64(ARG2,ARG3), MERGE64(ARG4, ARG5));
PRE_REG_READ5(long, "posix_fallocate",
int, fd, vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset),
vki_uint32_t, MERGE64_FIRST(len),
vki_uint32_t, MERGE64_SECOND(len));
}
// SYS_posix_fadvise 531
// int posix_fadvise(int fd, off_t offset, off_t len, int advice);
PRE(sys_posix_fadvise)
{
PRINT("sys_posix_fadvise ( %" FMT_REGWORD "d, %llu, %llu, %" FMT_REGWORD "d )",
SARG1, MERGE64(ARG2,ARG3), MERGE64(ARG4,ARG5), SARG6);
PRE_REG_READ6(long, "posix_fadvise",
int, fd, vki_uint32_t, MERGE64_FIRST(offset),
vki_uint32_t, MERGE64_SECOND(offset),
vki_uint32_t, MERGE64_FIRST(len),
vki_uint32_t, MERGE64_SECOND(len),
int, advice);
}
// SYS_wait6 532
// pid_t wait6(idtype_t idtype, id_t id, int *status, int options,
// struct __wrusage *wrusage, siginfo_t *infop);
PRE(sys_wait6)
{
PRINT("sys_wait6 ( %" FMT_REGWORD "d, %llu, %#" FMT_REGWORD "x, %" FMT_REGWORD "d, %#" FMT_REGWORD "x, %#" FMT_REGWORD "x )",
SARG1, MERGE64(ARG2, ARG3), ARG4, SARG5, ARG6, ARG7);
PRE_REG_READ7(pid_t, "wait6", vki_idtype_t, idtype,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
int *, status, int, options,
struct vki___wrusage *, wrusage, vki_siginfo_t *,infop);
PRE_MEM_WRITE("wait6(status)", ARG4, sizeof(int));
if (ARG6) {
PRE_MEM_WRITE("wait6(wrusage)", ARG6, sizeof(struct vki___wrusage));
}
if (ARG7) {
PRE_MEM_WRITE("wait6(infop)", ARG7, sizeof(vki_siginfo_t));
}
}
POST(sys_wait6)
{
POST_MEM_WRITE(ARG4, sizeof(int));
if (ARG6) {
POST_MEM_WRITE(ARG6, sizeof(struct vki___wrusage));
}
if (ARG7) {
POST_MEM_WRITE(ARG7, sizeof(vki_siginfo_t));
}
}
// the man page is inconsistent for the last argument
// See https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=247386
// will stick to 'arg' for simplicity
// SYS_procctl 544
// int procctl(idtype_t idtype, id_t id, int cmd, void *arg);
PRE(sys_procctl)
{
PRINT("sys_procctl ( %" FMT_REGWORD "d, %llu, %" FMT_REGWORD"d, %#" FMT_REGWORD "x )",
SARG1, MERGE64(ARG2, ARG3), SARG4, ARG5);
PRE_REG_READ5(int, "procctl", vki_idtype_t, idtype,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
int, cmd, void *, arg);
switch (ARG4) {
case VKI_PROC_ASLR_CTL:
case VKI_PROC_SPROTECT:
case VKI_PROC_TRACE_CTL:
case VKI_PROC_TRAPCAP_CTL:
case VKI_PROC_PDEATHSIG_CTL:
case VKI_PROC_STACKGAP_CTL:
case VKI_PROC_NO_NEW_PRIVS_CTL:
case VKI_PROC_WXMAP_CTL:
PRE_MEM_READ("procctl(arg)", ARG5, sizeof(int));
break;
case VKI_PROC_REAP_STATUS:
PRE_MEM_READ("procctl(arg)", ARG5, sizeof(struct vki_procctl_reaper_status));
break;
case VKI_PROC_REAP_GETPIDS:
PRE_MEM_READ("procctl(arg)", ARG5, sizeof(struct vki_procctl_reaper_pids));
break;
case VKI_PROC_REAP_KILL:
/* The first three fields are reads
* int rk_sig;
* u_int rk_flags;
* pid_t rk_subtree;
*
* The last two fields are writes
* u_int rk_killed;
* pid_t rk_fpid;
*
* There is also a pad field
*/
PRE_MEM_READ("procctl(arg)", ARG5, sizeof(int) + sizeof(u_int) + sizeof(vki_pid_t));
PRE_MEM_WRITE("procctl(arg)", ARG5+offsetof(struct vki_procctl_reaper_kill, rk_killed), sizeof(u_int) + sizeof(vki_pid_t));
break;
case VKI_PROC_ASLR_STATUS:
case VKI_PROC_PDEATHSIG_STATUS:
case VKI_PROC_STACKGAP_STATUS:
case VKI_PROC_TRAPCAP_STATUS:
case VKI_PROC_TRACE_STATUS:
PRE_MEM_WRITE("procctl(arg)", ARG5, sizeof(int));
case VKI_PROC_REAP_ACQUIRE:
case VKI_PROC_REAP_RELEASE:
default:
break;
}
}
POST(sys_procctl)
{
switch (ARG4) {
case VKI_PROC_REAP_KILL:
POST_MEM_WRITE(ARG5+offsetof(struct vki_procctl_reaper_kill, rk_killed), sizeof(u_int) + sizeof(vki_pid_t));
break;
case VKI_PROC_ASLR_STATUS:
case VKI_PROC_PDEATHSIG_STATUS:
case VKI_PROC_STACKGAP_STATUS:
case VKI_PROC_TRAPCAP_STATUS:
case VKI_PROC_TRACE_STATUS:
case VKI_PROC_NO_NEW_PRIVS_STATUS:
case VKI_PROC_WXMAP_STATUS:
POST_MEM_WRITE(ARG5, sizeof(int));
default:
break;
}
}
// SYS_mknodat 559
// int mknodat(int fd, const char *path, mode_t mode, dev_t dev);
PRE(sys_mknodat)
{
PRINT("sys_mknodat ( %" FMT_REGWORD "u, %#" FMT_REGWORD "x(%s), 0x%" FMT_REGWORD "x, 0x%" FMT_REGWORD "x )", ARG1,ARG2,(char*)ARG2,ARG3,ARG4 );
PRE_REG_READ5(long, "mknodat",
int, fd, const char *, path, vki_mode_t, mode, vki_uint32_t, MERGE64_FIRST(dev), vki_uint32_t, MERGE64_SECOND(idev))
PRE_MEM_RASCIIZ( "mknodat(pathname)", ARG2 );
}
#if (FREEBSD_VERS >= FREEBSD_12)
// SYS_cpuset_getdomain 561
// int cpuset_getdomain(cpulevel_t level, cpuwhich_t which, id_t id,
// size_t setsize, domainset_t *mask, int *policy);
PRE(sys_cpuset_getdomain)
{
PRINT("sys_cpuset_getdomain ( %" FMT_REGWORD "d, %" FMT_REGWORD "d, %llu, %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %#" FMT_REGWORD "x )",
SARG1, SARG2, MERGE64(ARG3, ARG4), ARG5, ARG6, ARG7);
PRE_REG_READ7(int, "cpuset_getdomain",
cpulevel_t, level, cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
size_t, setsize, vki_domainset_t *, mask, int *, policy);
// man page says that setsize (ARG4) "is usually provided by calling sizeof(mask)"
PRE_MEM_WRITE( "cpuset_getdomain(mask)", ARG6, ARG5 );
PRE_MEM_WRITE( "cpuset_getdomain(policy)", ARG7, sizeof(int) );
}
POST(sys_cpuset_getdomain)
{
POST_MEM_WRITE(ARG5, ARG4 );
POST_MEM_WRITE(ARG6, sizeof(int) );
}
// SYS_cpuset_setdomain 562
// int cuset_setdomain(cpulevel_t level, cpuwhich_t which, id_t id,
// size_t setsize, const domainset_t *mask, int policy);
PRE(sys_cpuset_setdomain)
{
PRINT("sys_cpuget_getdomain ( %" FMT_REGWORD "d, %" FMT_REGWORD "d, %llu, %" FMT_REGWORD "u, %#" FMT_REGWORD "x, %" FMT_REGWORD "d )",
SARG1, SARG2, MERGE64(ARG3, ARG4), ARG5, ARG6, SARG7);
PRE_REG_READ7(int, "cpuset_getdomain",
cpulevel_t, level, cpuwhich_t, which,
vki_uint32_t, MERGE64_FIRST(id),
vki_uint32_t, MERGE64_SECOND(id),
size_t, setsize, vki_domainset_t *, mask, int, policy);
// man page says that setsize (ARG4) "is usually provided by calling sizeof(mask)"
PRE_MEM_READ( "cpuset_getdomain(mask)", ARG6, ARG5 );
}
#endif
PRE(sys_fake_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
ThreadState* tst;
struct vki_ucontext *uc;
PRINT("sys_sigreturn ( %#" FMT_REGWORD "x )", ARG1);
PRE_REG_READ1(long, "sigreturn",
struct vki_ucontext *, scp);
PRE_MEM_READ( "sigreturn(scp)", ARG1, sizeof(struct vki_ucontext) );
PRE_MEM_WRITE( "sigreturn(scp)", ARG1, sizeof(struct vki_ucontext) );
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust esp to point to start of frame; skip back up over handler
ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_ESP -= sizeof(Addr); /* QQQ should be redundant */
uc = (struct vki_ucontext *)ARG1;
if (uc == NULL || uc->uc_mcontext.len != sizeof(uc->uc_mcontext)) {
SET_STATUS_Failure(VKI_EINVAL);
return;
}
/* This is only so that the EIP is (might be) useful to report if
something goes wrong in the sigreturn */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid);
/* For unclear reasons, it appears we need the syscall to return
without changing %EAX. Since %EAX is the return value, and can
denote either success or failure, we must set up so that the
driver logic copies it back unchanged. Also, note %EAX is of
the guest registers written by VG_(sigframe_destroy). */
int eflags = LibVEX_GuestX86_get_eflags(&tst->arch.vex);
SET_STATUS_from_SysRes( VG_(mk_SysRes_x86_freebsd)( tst->arch.vex.guest_EAX,
tst->arch.vex.guest_EDX, (eflags & 1) != 0 ? True : False) );
/*
* Signal handler might have changed the signal mask. Respect that.
*/
tst->sig_mask = uc->uc_sigmask;
tst->tmp_sig_mask = uc->uc_sigmask;
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
#undef PRE
#undef POST
#endif /* defined(VGP_x86_freebsd) */
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/