Philippe Waroquiers 348775f34b Remove register cache to fix 458915 gdbserver causes wrong syscall return
The valgrind gdbserver inheritated a register cache from the original
GDBserver implementation.
The objective of this register cache was to improve the performance
of GDB-> gdbserver -> inferior by avoiding the gdbserver having to
do ptrace system calls each time GDB wants to read or write a register
when the inferior is stopped.

This register cache is however not useful for the valgrind gdbserver:
As the valgrind gdbserver being co-located with the inferior, it
can directly and efficiently read and write registers from/to the VEX
state.

This commit ensures the valgrind GDBserver directly reads from
VEX state instead of fetching the registers from the VEX state and
copying them to the gdbserver regcache.

Similarly, when GDB wants to modify a register, the valgrind GDB server now
directly writes into the VEX state instead of writing the registers
in the regcache and having the regcache flushed to the VEX state
when execution is resumed.

The files regcache.h and regcache.c are still useful as they provide
a translation between a register number, a register name on one side
and the offset in an array of bytes in the format expected by GDB.
The regcache now is only used to create this array of bytes, which is
itself only used temporarily when GDB reads or writes the complete
set of registers instead of reading/writing one register at a time.

Removing the usage of this regcache avoids the bug 458915.
The regcache was causing the bug in the following circumstances:
We have a thread executing code, while we have a bunch of threads
that are blocked in a syscall.
When a thread is blocked in a syscall, the VEX rax register is set to the
syscall nr.
A thread executing code will check from time to time if GDB tries to
attach.
When GDB attaches to the valgrind gdbserver , the thread executing code
will copy the registers from all the threads to the thread gdbserver regcache.
However, the threads blocked in a system call can be unblocked e.g.
because the epoll_wait timeout expires. In such a case, the thread will
still execute the few instructions that follow the syscall instructions
till the thread is blocked trying to acquire the scheduler lock.
These instructions are extracting the syscall return code from the host
register and copies it to the valgrind VEX state.
However, this assembly code is not aware that there is a gdbserver cache.
When the unblocked thread is on the acquire lock statement,
the GDB server regcache is now inconsistent (i.e. different from) the
real VEX state.
When finally GDB tells GDB server to continue execution, the GDB server
wrongly detected that its regcache was modified compared to the VEX state:
the regcache still contains e.g. for the rax register the syscall number
while the unblocked thread has put the syscall return code in the VEX
rax register. GDBserver then flushed the regcache rax (containing the
syscall number) to the VEX rax.
And that led to the detected bug that the syscall return code seen by
the guest application was the syscall number.

Removing the regcache ensures that GDB directly reads the values
from VEX and directly writes to VEX state.

Note that we could still have GDB reading from VEX a register value
that will be changed a few instructions later.
GDB will then show some (slightly) old/obsolete values
for some registers to the user.
This should have no consequence as long as GDB does not try to modify
the registers to execute an inferior call.

The bug did not happen systematically as most of the time, when threads are
blocked in syscalls, vgdb attaches using ptrace to the valgrind process.
When vgdb attaches with ptrace, it stops all the threads using linux syscall.
When vgdb stops the threads, the threads blocked in a syscall will not
execute the instructions between the syscall instruction and the lock
acquire, and so the problem of desynchronisation between the VEX state
and the register cache could not happen.

This commit touches architecture specific files of the gdbserver,
it has been tested on amd64/debian, on pcc64/centos and on arm64/ubuntu.
Possibly, some untested arch might not compile but the fix should be trivial.
2022-10-16 00:44:40 +02:00

874 lines
28 KiB
C

/* Target operations for the remote server for GDB.
Copyright (C) 2002, 2004, 2005, 2011
Free Software Foundation, Inc.
Contributed by MontaVista Software.
This file is part of GDB.
It has been modified to integrate it in valgrind
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "server.h"
#include "target.h"
#include "regdef.h"
#include "regcache.h"
#include "valgrind_low.h"
#include "gdb/signals.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_machine.h"
#include "pub_core_threadstate.h"
#include "pub_core_transtab.h"
#include "pub_core_gdbserver.h"
#include "pub_core_debuginfo.h"
/* the_low_target defines the architecture specific aspects depending
on the cpu */
static struct valgrind_target_ops the_low_target;
static
char *image_ptid(unsigned long ptid)
{
static char result[50]; // large enough
VG_(sprintf) (result, "id %lu", ptid);
return result;
}
#define get_thread(inf) ((struct thread_info *)(inf))
static
void remove_thread_if_not_in_vg_threads (struct inferior_list_entry *inf)
{
struct thread_info *thread = get_thread (inf);
if (!VG_(lwpid_to_vgtid)(thread_to_gdb_id(thread))) {
dlog(1, "removing gdb ptid %s\n",
image_ptid(thread_to_gdb_id(thread)));
remove_thread (thread);
}
}
/* synchronize threads known by valgrind and threads known by gdbserver */
static
void valgrind_update_threads (int pid)
{
ThreadId tid;
ThreadState *ts;
unsigned long ptid;
struct thread_info *ti;
/* call remove_thread for all gdb threads not in valgrind threads */
for_each_inferior (&all_threads, remove_thread_if_not_in_vg_threads);
/* call add_thread for all valgrind threads not known in gdb all_threads */
for (tid = 1; tid < VG_N_THREADS; tid++) {
#define LOCAL_THREAD_TRACE " ti* %p vgtid %u status %s as gdb ptid %s lwpid %d\n", \
ti, tid, VG_(name_of_ThreadStatus) (ts->status), \
image_ptid (ptid), ts->os_state.lwpid
if (VG_(is_valid_tid) (tid)) {
ts = VG_(get_ThreadState) (tid);
ptid = ts->os_state.lwpid;
ti = gdb_id_to_thread (ptid);
if (!ti) {
/* we do not report the threads which are not yet fully
initialized otherwise this creates duplicated threads
in gdb: once with pid xxx lwpid 0, then after that
with pid xxx lwpid yyy. */
if (ts->status != VgTs_Init) {
dlog(1, "adding_thread" LOCAL_THREAD_TRACE);
add_thread (ptid, ts, ptid);
}
} else {
dlog(2, "(known thread)" LOCAL_THREAD_TRACE);
}
}
#undef LOCAL_THREAD_TRACE
}
}
static
struct reg* build_shadow_arch (struct reg *reg_defs, int n) {
int i, r;
static const char *postfix[3] = { "", "s1", "s2" };
struct reg *new_regs = malloc(3 * n * sizeof(reg_defs[0]));
int reg_set_len = reg_defs[n-1].offset + reg_defs[n-1].size;
for (i = 0; i < 3; i++) {
for (r = 0; r < n; r++) {
char *regname = malloc(strlen(reg_defs[r].name)
+ strlen (postfix[i]) + 1);
strcpy (regname, reg_defs[r].name);
strcat (regname, postfix[i]);
new_regs[i*n + r].name = regname;
new_regs[i*n + r].offset = i*reg_set_len + reg_defs[r].offset;
new_regs[i*n + r].size = reg_defs[r].size;
dlog(1,
"%-10s Nr %d offset(bit) %d offset(byte) %d size(bit) %d\n",
new_regs[i*n + r].name, i*n + r, new_regs[i*n + r].offset,
(new_regs[i*n + r].offset) / 8, new_regs[i*n + r].size);
}
}
return new_regs;
}
static CORE_ADDR stopped_data_address = 0;
void VG_(set_watchpoint_stop_address) (Addr addr)
{
stopped_data_address = addr;
}
int valgrind_stopped_by_watchpoint (void)
{
return stopped_data_address != 0;
}
CORE_ADDR valgrind_stopped_data_address (void)
{
return stopped_data_address;
}
/* pc at which we last stopped */
static CORE_ADDR stop_pc;
/* pc at which we resume.
If stop_pc != resume_pc, it means
gdb/gdbserver has changed the pc so as to have either
a "continue by jumping at that address"
or a "continue at that address to call some code from gdb".
*/
static CORE_ADDR resume_pc;
static vki_siginfo_t vki_signal_to_report;
static vki_siginfo_t vki_signal_to_deliver;
void gdbserver_signal_encountered (const vki_siginfo_t *info)
{
vki_signal_to_report = *info;
vki_signal_to_deliver = *info;
}
void gdbserver_pending_signal_to_report (vki_siginfo_t *info)
{
*info = vki_signal_to_report;
}
Bool gdbserver_deliver_signal (vki_siginfo_t *info)
{
if (info->si_signo != vki_signal_to_deliver.si_signo)
dlog(1, "GDB changed signal info %d to_report %d to_deliver %d\n",
info->si_signo, vki_signal_to_report.si_signo,
vki_signal_to_deliver.si_signo);
*info = vki_signal_to_deliver;
return vki_signal_to_deliver.si_signo != 0;
}
static Bool before_syscall;
static Int sysno_to_report = -1;
void gdbserver_syscall_encountered (Bool before, Int sysno)
{
before_syscall = before;
sysno_to_report = sysno;
}
Int valgrind_stopped_by_syscall (void)
{
return sysno_to_report;
}
Bool valgrind_stopped_before_syscall()
{
vg_assert (sysno_to_report >= 0);
return before_syscall;
}
static unsigned char exit_status_to_report;
static int exit_code_to_report;
void gdbserver_process_exit_encountered (unsigned char status, Int code)
{
vg_assert (status == 'W' || status == 'X');
exit_status_to_report = status;
exit_code_to_report = code;
}
static
const HChar* sym (Addr addr)
{
// Tracing/debugging so cur_ep is reasonable.
const DiEpoch cur_ep = VG_(current_DiEpoch)();
return VG_(describe_IP) (cur_ep, addr, NULL);
}
ThreadId vgdb_interrupted_tid = 0;
/* 0 => not single stepping.
1 => single stepping asked by gdb
2 => single stepping asked by valgrind (watchpoint) */
static int stepping = 0;
Addr valgrind_get_ignore_break_once(void)
{
if (valgrind_single_stepping())
return resume_pc;
else
return 0;
}
void valgrind_set_single_stepping(Bool set)
{
if (set)
stepping = 2;
else
stepping = 0;
}
Bool valgrind_single_stepping(void)
{
if (stepping)
return True;
else
return False;
}
int valgrind_thread_alive (unsigned long tid)
{
struct thread_info *ti = gdb_id_to_thread(tid);
ThreadState *tst;
if (ti != NULL) {
tst = (ThreadState *) inferior_target_data (ti);
return tst->status != VgTs_Zombie;
}
else {
return 0;
}
}
void valgrind_resume (struct thread_resume *resume_info)
{
dlog(1,
"resume_info step %d sig %d stepping %d\n",
resume_info->step,
resume_info->sig,
stepping);
if (valgrind_stopped_by_watchpoint()) {
dlog(1, "clearing watchpoint stopped_data_address %p\n",
C2v(stopped_data_address));
VG_(set_watchpoint_stop_address) ((Addr) 0);
}
if (valgrind_stopped_by_syscall () >= 0) {
dlog(1, "clearing stopped by syscall %d\n",
valgrind_stopped_by_syscall ());
gdbserver_syscall_encountered (False, -1);
}
vki_signal_to_deliver.si_signo = resume_info->sig;
/* signal was reported to GDB, GDB told us to resume execution.
So, reset the signal to report to 0. */
VG_(memset) (&vki_signal_to_report, 0, sizeof(vki_signal_to_report));
stepping = resume_info->step;
resume_pc = (*the_low_target.get_pc) ();
if (resume_pc != stop_pc) {
dlog(1,
"stop_pc %p changed to be resume_pc %s\n",
C2v(stop_pc), sym(resume_pc));
}
}
unsigned char valgrind_wait (char *ourstatus)
{
int pid;
unsigned long wptid;
ThreadState *tst;
enum target_signal sig;
int code;
pid = VG_(getpid) ();
dlog(1, "enter valgrind_wait pid %d\n", pid);
valgrind_update_threads(pid);
/* First see if we are done with this process. */
if (exit_status_to_report != 0) {
*ourstatus = exit_status_to_report;
exit_status_to_report = 0;
if (*ourstatus == 'W') {
code = exit_code_to_report;
exit_code_to_report = 0;
dlog(1, "exit valgrind_wait status W exit code %d\n", code);
return code;
}
if (*ourstatus == 'X') {
sig = target_signal_from_host(exit_code_to_report);
exit_code_to_report = 0;
dlog(1, "exit valgrind_wait status X signal %u\n", sig);
return sig;
}
}
/* in valgrind, we consider that a wait always succeeds with STOPPED 'T'
and with a signal TRAP (i.e. a breakpoint), unless there is
a signal to report. */
*ourstatus = 'T';
if (vki_signal_to_report.si_signo == 0)
sig = TARGET_SIGNAL_TRAP;
else
sig = target_signal_from_host(vki_signal_to_report.si_signo);
if (vgdb_interrupted_tid != 0)
tst = VG_(get_ThreadState) (vgdb_interrupted_tid);
else
tst = VG_(get_ThreadState) (VG_(running_tid));
wptid = tst->os_state.lwpid;
/* we can only change the current_inferior when the wptid references
an existing thread. Otherwise, we are still in the init phase.
(hack similar to main thread hack in valgrind_update_threads) */
if (tst->os_state.lwpid)
current_inferior = gdb_id_to_thread (wptid);
stop_pc = (*the_low_target.get_pc) ();
dlog(1,
"exit valgrind_wait status T ptid %s stop_pc %s signal %u\n",
image_ptid (wptid), sym (stop_pc), sig);
return sig;
}
/* Fetch one register from valgrind VEX guest state. */
void valgrind_fetch_register (int regno, unsigned char *buf)
{
int size;
ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
ThreadId tid = tst->tid;
if (regno < 0 || regno >= the_low_target.num_regs) {
dlog(0, "error fetch_register regno %d max %d\n",
regno, the_low_target.num_regs);
return;
}
size = register_size (regno);
if (size > 0) {
Bool mod;
VG_(memset) (buf, 0, size); // registers not fetched will be seen as 0.
(*the_low_target.transfer_register) (tid, regno, buf,
valgrind_to_gdbserver, size, &mod);
// Note: the *mod received from transfer_register is not interesting.
if (mod && VG_(debugLog_getLevel)() > 1) {
char bufimage [2*size + 1];
heximage (bufimage, (char*) buf, size);
dlog(3, "fetched register %d size %d name %s value %s tid %u status %s\n",
regno, size, the_low_target.reg_defs[regno].name, bufimage,
tid, VG_(name_of_ThreadStatus) (tst->status));
}
}
}
/* Store register REGNO value back into the inferior VEX state. */
void valgrind_store_register (int regno, const unsigned char *buf)
{
int size;
ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
ThreadId tid = tst->tid;
if (regno < 0 || regno >= the_low_target.num_regs) {
dlog(0, "error store_register regno %d max %d\n",
regno, the_low_target.num_regs);
return;
}
size = register_size (regno);
if (size > 0) {
Bool mod;
Addr old_SP, new_SP;
if (regno == the_low_target.stack_pointer_regno) {
/* When the stack pointer register is changed such that
the stack is extended, we better inform the tool of the
stack increase. This is needed in particular to avoid
spurious Memcheck errors during Inferior calls. So, we
save in old_SP the SP before the change. A change of
stack pointer is also assumed to have initialised this
new stack space. For the typical example of an inferior
call, gdb writes arguments on the stack, and then
changes the stack pointer. As the stack increase tool
function might mark it as undefined, we have to call it
at the good moment. */
VG_(memset) ((void *) &old_SP, 0, size);
(*the_low_target.transfer_register) (tid, regno, (void *) &old_SP,
valgrind_to_gdbserver, size, &mod);
}
char buf_copy[size];
/* copy buf to buf_copy to avoid warnings passing a const to transfer_register.
This is ok as transfer_register called with gdbserver_to_valgrind will read from
buf and write to VEX state. */
VG_(memcpy) (buf_copy, buf, size);
(*the_low_target.transfer_register) (tid, regno, buf_copy,
gdbserver_to_valgrind, size, &mod);
if (mod && VG_(debugLog_getLevel)() > 1) {
char bufimage [2*size + 1];
heximage (bufimage, buf_copy, size);
dlog(2,
"stored register %d size %d name %s value %s "
"tid %u status %s\n",
regno, size, the_low_target.reg_defs[regno].name, bufimage,
tid, VG_(name_of_ThreadStatus) (tst->status));
}
if (regno == the_low_target.stack_pointer_regno) {
VG_(memcpy) (&new_SP, buf, size);
if (old_SP > new_SP) {
Word delta = (Word)new_SP - (Word)old_SP;
dlog(1,
" stack increase by stack pointer changed from %p to %p "
"delta %ld\n",
(void*) old_SP, (void *) new_SP,
delta);
VG_TRACK( new_mem_stack_w_ECU, new_SP, -delta, 0 );
VG_TRACK( new_mem_stack, new_SP, -delta );
VG_TRACK( post_mem_write, Vg_CoreClientReq, tid,
new_SP, -delta);
}
}
}
}
Bool hostvisibility = False;
int valgrind_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
const void *sourceaddr = C2v (memaddr);
dlog(3, "reading memory %p size %d\n", sourceaddr, len);
if (VG_(am_is_valid_for_client) ((Addr) sourceaddr,
len, VKI_PROT_READ)
|| (hostvisibility
&& VG_(am_is_valid_for_valgrind) ((Addr) sourceaddr,
len, VKI_PROT_READ))) {
VG_(memcpy) (myaddr, sourceaddr, len);
return 0;
} else {
dlog(1, "error reading memory %p size %d\n", sourceaddr, len);
return -1;
}
}
int valgrind_write_memory (CORE_ADDR memaddr,
const unsigned char *myaddr, int len)
{
Bool is_valid_client_memory;
void *targetaddr = C2v (memaddr);
dlog(3, "writing memory %p size %d\n", targetaddr, len);
is_valid_client_memory
= VG_(am_is_valid_for_client) ((Addr)targetaddr, len, VKI_PROT_WRITE);
if (is_valid_client_memory
|| (hostvisibility
&& VG_(am_is_valid_for_valgrind) ((Addr) targetaddr,
len, VKI_PROT_READ))) {
if (len > 0) {
VG_(memcpy) (targetaddr, myaddr, len);
if (is_valid_client_memory && VG_(tdict).track_post_mem_write) {
/* Inform the tool of the post memwrite. Note that we do the
minimum necessary to avoid complains from e.g.
memcheck. The idea is that the debugger is as least
intrusive as possible. So, we do not inform of the pre
mem write (and in any case, this would cause problems with
memcheck that does not like our CorePart in
pre_mem_write. */
ThreadState *tst =
(ThreadState *) inferior_target_data (current_inferior);
ThreadId tid = tst->tid;
VG_(tdict).track_post_mem_write( Vg_CoreClientReq, tid,
(Addr) targetaddr, len );
}
}
return 0;
} else {
dlog(1, "error writing memory %p size %d\n", targetaddr, len);
return -1;
}
}
/* insert or remove a breakpoint */
static
int valgrind_point (Bool insert, char type, CORE_ADDR addr, int len)
{
PointKind kind;
switch (type) {
case '0': /* implemented by inserting checks at each instruction in sb */
kind = software_breakpoint;
break;
case '1': /* hw breakpoint, same implementation as sw breakpoint */
kind = hardware_breakpoint;
break;
case '2':
kind = write_watchpoint;
break;
case '3':
kind = read_watchpoint;
break;
case '4':
kind = access_watchpoint;
break;
default:
vg_assert (0);
}
/* Attention: gdbserver convention differs: 0 means ok; 1 means not ok */
if (VG_(gdbserver_point) (kind, insert, addr, len))
return 0;
else
return 1; /* error or unsupported */
}
const char* valgrind_target_xml (Bool shadow_mode)
{
return (*the_low_target.target_xml) (shadow_mode);
}
int valgrind_insert_watchpoint (char type, CORE_ADDR addr, int len)
{
return valgrind_point (/* insert */ True, type, addr, len);
}
int valgrind_remove_watchpoint (char type, CORE_ADDR addr, int len)
{
return valgrind_point (/* insert*/ False, type, addr, len);
}
/* Returns the (platform specific) offset of lm_modid field in the link map
struct.
Stores the offset in *result and returns True if offset can be determined.
Returns False otherwise. *result is not to be used then. */
static Bool getplatformoffset (SizeT *result)
{
static Bool getplatformoffset_called = False;
static Bool lm_modid_offset_found = False;
static SizeT lm_modid_offset = 1u << 31; // Rubbish initial value.
// lm_modid_offset is a magic offset, retrieved using an external program.
if (!getplatformoffset_called) {
getplatformoffset_called = True;
const HChar *platform = VG_PLATFORM;
const HChar *cmdformat = "%s/%s-%s -o %s";
const HChar *getoff = "getoff";
HChar outfile[VG_(mkstemp_fullname_bufsz) (VG_(strlen)(getoff))];
Int fd = VG_(mkstemp) (getoff, outfile);
if (fd == -1)
return False;
HChar cmd[ VG_(strlen)(cmdformat)
+ VG_(strlen)(VG_(libdir)) - 2
+ VG_(strlen)(getoff) - 2
+ VG_(strlen)(platform) - 2
+ VG_(strlen)(outfile) - 2
+ 1];
UInt cmdlen;
struct vg_stat stat_buf;
Int ret;
cmdlen = VG_(snprintf)(cmd, sizeof(cmd),
cmdformat,
VG_(libdir), getoff, platform, outfile);
vg_assert (cmdlen == sizeof(cmd) - 1);
ret = VG_(system) (cmd);
if (ret != 0 || VG_(debugLog_getLevel)() >= 1)
VG_(dmsg) ("command %s exit code %d\n", cmd, ret);
ret = VG_(fstat)( fd, &stat_buf );
if (ret != 0)
VG_(dmsg) ("error VG_(fstat) %d %s\n", fd, outfile);
else {
HChar *w;
HChar *ssaveptr;
HChar *os;
HChar *str;
HChar *endptr;
os = malloc (stat_buf.size+1);
vg_assert (os);
ret = VG_(read)(fd, os, stat_buf.size);
vg_assert(ret == stat_buf.size);
os[ret] = '\0';
str = os;
while ((w = VG_(strtok_r)(str, " \n", &ssaveptr)) != NULL) {
if (VG_(strcmp) (w, "lm_modid_offset") == 0) {
w = VG_(strtok_r)(NULL, " \n", &ssaveptr);
lm_modid_offset = (SizeT) VG_(strtoull16) ( w, &endptr );
if (endptr == w)
VG_(dmsg) ("%s lm_modid_offset unexpected hex value %s\n",
cmd, w);
else
lm_modid_offset_found = True;
} else {
VG_(dmsg) ("%s produced unexpected %s\n", cmd, w);
}
str = NULL; // ensure next VG_(strtok_r) continues the parsing.
}
VG_(free) (os);
}
VG_(close)(fd);
ret = VG_(unlink)( outfile );
if (ret != 0)
VG_(umsg) ("error: could not unlink %s\n", outfile);
}
*result = lm_modid_offset;
return lm_modid_offset_found;
}
Bool valgrind_get_tls_addr (ThreadState *tst,
CORE_ADDR offset,
CORE_ADDR lm,
CORE_ADDR *tls_addr)
{
CORE_ADDR **dtv_loc;
CORE_ADDR *dtv;
SizeT lm_modid_offset;
unsigned long int modid;
#define CHECK_DEREF(addr, len, name) \
if (!VG_(am_is_valid_for_client) ((Addr)(addr), (len), VKI_PROT_READ)) { \
dlog(0, "get_tls_addr: %s at %p len %lu not addressable\n", \
name, (void*)(addr), (unsigned long)(len)); \
return False; \
}
*tls_addr = 0;
if (the_low_target.target_get_dtv == NULL) {
dlog(1, "low level dtv support not available\n");
return False;
}
if (!getplatformoffset (&lm_modid_offset)) {
dlog(0, "link_map modid field offset not available\n");
return False;
}
dlog (2, "link_map modid offset %p\n", (void*)lm_modid_offset);
vg_assert (lm_modid_offset < 0x10000); // let's say
dtv_loc = (*the_low_target.target_get_dtv)(tst);
if (dtv_loc == NULL) {
dlog(0, "low level dtv support returned NULL\n");
return False;
}
CHECK_DEREF(dtv_loc, sizeof(CORE_ADDR), "dtv_loc");
dtv = *dtv_loc;
// Check we can read at least 2 address at the beginning of dtv.
CHECK_DEREF(dtv, 2*sizeof(CORE_ADDR), "dtv 2 first entries");
dlog (2, "tid %u dtv %p\n", tst->tid, (void*)dtv);
// Check we can read the modid
CHECK_DEREF(lm+lm_modid_offset, sizeof(unsigned long int), "link_map modid");
modid = *(unsigned long int *)(lm+lm_modid_offset);
dlog (2, "tid %u modid %lu\n", tst->tid, modid);
// Check we can access the dtv entry for modid
CHECK_DEREF(dtv + 2 * modid, sizeof(CORE_ADDR), "dtv[2*modid]");
// Compute the base address of the tls block.
*tls_addr = *(dtv + 2 * modid);
if (*tls_addr & 1) {
/* This means that computed address is not valid, most probably
because given module uses Static TLS.
However, the best we can is to try to compute address using
static TLS. This is what libthread_db does.
Ref. GLIBC/nptl_db/td_thr_tlsbase.c:td_thr_tlsbase().
*/
CORE_ADDR tls_offset_addr;
PtrdiffT tls_offset;
dlog(2, "tls_addr (%p & 1) => computing tls_addr using static TLS\n",
(void*) *tls_addr);
/* Assumes that tls_offset is placed right before tls_modid.
To check the assumption, start a gdb on none/tests/tls and do:
p &((struct link_map*)0x0)->l_tls_modid
p &((struct link_map*)0x0)->l_tls_offset
Instead of assuming this, we could calculate this similarly to
lm_modid_offset, by extending getplatformoffset to support querying
more than one offset.
*/
tls_offset_addr = lm + lm_modid_offset - sizeof(PtrdiffT);
// Check we can read the tls_offset.
CHECK_DEREF(tls_offset_addr, sizeof(PtrdiffT), "link_map tls_offset");
tls_offset = *(PtrdiffT *)(tls_offset_addr);
dlog(2, "tls_offset_addr %p tls_offset %ld\n",
(void*)tls_offset_addr, (long)tls_offset);
/* Following two values represent platform dependent constants
NO_TLS_OFFSET and FORCED_DYNAMIC_TLS_OFFSET, respectively. */
if ((tls_offset == -1) || (tls_offset == -2)) {
dlog(2, "link_map tls_offset is not valid for static TLS\n");
return False;
}
// This calculation is also platform dependent.
#if defined(VGA_mips32) || defined(VGA_mips64)
*tls_addr = ((CORE_ADDR)dtv_loc + 2 * sizeof(CORE_ADDR) + tls_offset);
#elif defined(VGA_ppc64be) || defined(VGA_ppc64le)
*tls_addr = ((CORE_ADDR)dtv_loc + sizeof(CORE_ADDR) + tls_offset);
#elif defined(VGA_x86) || defined(VGA_amd64) || defined(VGA_s390x)
*tls_addr = (CORE_ADDR)dtv_loc - tls_offset - sizeof(CORE_ADDR);
#else
// ppc32, arm, arm64
dlog(0, "target.c is missing platform code for static TLS\n");
return False;
#endif
}
// Finally, add tls variable offset to tls block base address.
*tls_addr += offset;
return True;
#undef CHECK_DEREF
}
/* returns a pointer to the architecture state corresponding to
the provided register set: 0 => normal guest registers,
1 => shadow1
2 => shadow2
*/
VexGuestArchState* get_arch (int set, ThreadState* tst)
{
switch (set) {
case 0: return &tst->arch.vex;
case 1: return &tst->arch.vex_shadow1;
case 2: return &tst->arch.vex_shadow2;
default: vg_assert(0);
}
}
static int non_shadow_num_regs = 0;
static struct reg *non_shadow_reg_defs = NULL;
void initialize_shadow_low(Bool shadow_mode)
{
if (non_shadow_reg_defs == NULL) {
non_shadow_reg_defs = the_low_target.reg_defs;
non_shadow_num_regs = the_low_target.num_regs;
}
if (the_low_target.reg_defs != non_shadow_reg_defs) {
free (the_low_target.reg_defs);
}
if (shadow_mode) {
the_low_target.num_regs = 3 * non_shadow_num_regs;
the_low_target.reg_defs = build_shadow_arch (non_shadow_reg_defs, non_shadow_num_regs);
} else {
the_low_target.num_regs = non_shadow_num_regs;
the_low_target.reg_defs = non_shadow_reg_defs;
}
set_register_cache (the_low_target.reg_defs, the_low_target.num_regs);
}
void set_desired_inferior (int use_general)
{
struct thread_info *found;
if (use_general == 1) {
found = (struct thread_info *) find_inferior_id (&all_threads,
general_thread);
} else {
found = NULL;
/* If we are continuing any (all) thread(s), use step_thread
to decide which thread to step and/or send the specified
signal to. */
if ((step_thread != 0 && step_thread != -1)
&& (cont_thread == 0 || cont_thread == -1))
found = (struct thread_info *) find_inferior_id (&all_threads,
step_thread);
if (found == NULL)
found = (struct thread_info *) find_inferior_id (&all_threads,
cont_thread);
}
if (found == NULL)
current_inferior = (struct thread_info *) all_threads.head;
else
current_inferior = found;
{
ThreadState *tst = (ThreadState *) inferior_target_data (current_inferior);
ThreadId tid = tst->tid;
dlog(1, "set_desired_inferior use_general %d found %p tid %u lwpid %d\n",
use_general, found, tid, tst->os_state.lwpid);
}
}
void* VG_(dmemcpy) ( void *d, const void *s, SizeT sz, Bool *mod )
{
if (VG_(memcmp) (d, s, sz)) {
*mod = True;
return VG_(memcpy) (d, s, sz);
} else {
*mod = False;
return d;
}
}
void VG_(transfer) (void *valgrind,
void *gdbserver,
transfer_direction dir,
SizeT sz,
Bool *mod)
{
if (dir == valgrind_to_gdbserver)
VG_(dmemcpy) (gdbserver, valgrind, sz, mod);
else if (dir == gdbserver_to_valgrind)
VG_(dmemcpy) (valgrind, gdbserver, sz, mod);
else
vg_assert (0);
}
void valgrind_initialize_target(void)
{
#if defined(VGA_x86)
x86_init_architecture(&the_low_target);
#elif defined(VGA_amd64)
amd64_init_architecture(&the_low_target);
#elif defined(VGA_arm)
arm_init_architecture(&the_low_target);
#elif defined(VGA_arm64)
arm64_init_architecture(&the_low_target);
#elif defined(VGA_ppc32)
ppc32_init_architecture(&the_low_target);
#elif defined(VGA_ppc64be) || defined(VGA_ppc64le)
ppc64_init_architecture(&the_low_target);
#elif defined(VGA_s390x)
s390x_init_architecture(&the_low_target);
#elif defined(VGA_mips32)
mips32_init_architecture(&the_low_target);
#elif defined(VGA_mips64)
mips64_init_architecture(&the_low_target);
#elif defined(VGA_nanomips)
nanomips_init_architecture(&the_low_target);
#else
#error "architecture missing in target.c valgrind_initialize_target"
#endif
}