Files
ftmemsim-valgrind/coregrind/m_syswrap/syswrap-amd64-darwin.c
Philippe Waroquiers 51c6c85e22 The semantic of the stack bounds is not consistent or is not described.
At various places, there were either some assumption that the 'end'
boundary (highest address) was either not included, included,
or was the highest addressable word, or the highest addressable byte.
This e.g. was very visible when doing:
  ./vg-in-place -d -d ./helgrind/tests/tc01_simple_race|&grep regi
giving
  --24040:2:stacks     register 0xBEDB4000-0xBEDB4FFF as stack 0
  --24040:2:stacks     register 0x402C000-0x4A2C000 as stack 1
showing that the main stack end was (on x86) not the highest word
but the highest byte, while for the thread 1, the registered end
was a byte not part of the stack.

The attached patch ensures that stack bounds semantic are documented and
consistent. Also, some of the stack handling code is factorised.

The convention that the patch ensures and documents is:
start is the lowest addressable byte, end is the highest addressable byte.
(the words 'min' and 'max' have been kept when already used, as this wording is 
consistent with the new semantic of start/end).

In various debug log, used brackets [ and ] to make clear that
both bounds are included.

The code to guess and register the client stack was duplicated
in all the platform specific syswrap-<plat>-<os>.c files.
Code has been factorised in syswrap-generic.c

The patch has been regression tested on
   x86, amd64, ppc32/64, s390x.
It has been compiled and one test run on arm64.
Not compiled/not tested on darwin, android, mips32/64, arm


More in details, the patch does the following:

coregrind/pub_core_aspacemgr.h
include/valgrind.h
include/pub_tool_machine.h
coregrind/pub_core_scheduler.h
coregrind/pub_core_stacks.h
  - document start/end semantic in various functions
 also in pub_tool_machine.h:
  - replaces unclear 'bottommost address' by 'lowest address'
    (unclear as stack bottom is or at least can be interpreted as
     the 'functional' bottom of the stack, which is the highest
      address for 'stack growing downwards').
coregrind/pub_core_initimg.h
  replace unclear clstack_top by clstack_end
coregrind/m_main.c
  updated to clstack_end

coregrind/pub_core_threadstate.h
  renamed client_stack_highest_word to client_stack_highest_byte
coregrind/m_scheduler/scheduler.c
  computes client_stack_highest_byte as the highest addressable byte
  Update comments in call to VG_(show_sched_status)
coregrind/m_machine.c
coregrind/m_stacktrace.c
  updated to client_stack_highest_byte, and switched 
    stack_lowest/highest_word to stack_lowest/highest_byte accordingly

coregrind/m_stacks.c
  clarify semantic of start/end,
  added a comment to indicate why we invert start/end in register call
  (note that the code find_stack_by_addr was already assuming that
  end was included as the checks were doing e.g.
    sp >= i->start && sp <= i->end

coregrind/pub_core_clientstate.h
coregrind/m_clientstate.c
  renames Addr  VG_(clstk_base) to Addr  VG_(clstk_start_base)
    (start to indicate it is the lowest address, base suffix kept
     to indicate it is the initial lowest address).

coregrind/m_initimg/initimg-darwin.c
   updated to  VG_(clstk_start_base)
   replace unclear iicii.clstack_top by iicii.clstack_end
   updated clstack_max_size computation according to both bounds included.

coregrind/m_initimg/initimg-linux.c
   updated to  VG_(clstk_start_base)
   updated VG_(clstk_end) computation according to both bounds included.
   replace unclear iicii.clstack_top by iicii.clstack_end

coregrind/pub_core_aspacemgr.h
  extern Addr VG_(am_startup) : clarify semantic of the returned value
coregrind/m_aspacemgr/aspacemgr-linux.c
   removed a copy of a comment that was already in pub_core_aspacemgr.h
     (avoid double maintenance)
   renamed unclear suggested_clstack_top to suggested_clstack_end
    (note that here, it looks like suggested_clstack_top was already
     the last addressable byte)

* factorisation of the stack guessing and registration causes
  mechanical changes in the following files:
      coregrind/m_syswrap/syswrap-ppc64-linux.c
      coregrind/m_syswrap/syswrap-x86-darwin.c
      coregrind/m_syswrap/syswrap-amd64-linux.c
      coregrind/m_syswrap/syswrap-arm-linux.c
      coregrind/m_syswrap/syswrap-generic.c
      coregrind/m_syswrap/syswrap-mips64-linux.c
      coregrind/m_syswrap/syswrap-ppc32-linux.c
      coregrind/m_syswrap/syswrap-amd64-darwin.c
      coregrind/m_syswrap/syswrap-mips32-linux.c
      coregrind/m_syswrap/priv_syswrap-generic.h
      coregrind/m_syswrap/syswrap-x86-linux.c
      coregrind/m_syswrap/syswrap-s390x-linux.c
      coregrind/m_syswrap/syswrap-darwin.c
      coregrind/m_syswrap/syswrap-arm64-linux.c
 Some files to look at more in details:
  syswrap-darwin.c : the handling of sysctl(kern.usrstack) looked
    buggy to me, and has probably be made correct by the fact that
     VG_(clstk_end) is now the last addressable byte. However,unsure
    about this, as I could not find any documentation about 
    sysctl(kern.usrstack). I only find several occurences on the web,
    showing that the result of this is page aligned, which I guess
    means it must be 1+ the last addressable byte.
  syswrap-x86-darwin.c and syswrap-amd64-darwin.c
   I suspect the code that was computing client_stack_highest_word
   was wrong, and the patch makes it correct.
  syswrap-mips64-linux.c
    not sure what to do for this code. This is the only code
    that was guessing the stack differently from others.
    Kept (almost) untouched. To be discussed with mips maintainers.

coregrind/pub_core_libcassert.h
coregrind/m_libcassert.c
  * void VG_(show_sched_status):
     renamed Bool valgrind_stack_usage to Bool stack_usage
     if stack_usage, shows both the valgrind stack usage and
     the client stack boundaries
coregrind/m_scheduler/scheduler.c
coregrind/m_gdbserver/server.c
coregrind/m_gdbserver/remote-utils.c
   Updated comments in callers to VG_(show_sched_status)



git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14392
2014-08-29 22:53:19 +00:00

596 lines
22 KiB
C

/*--------------------------------------------------------------------*/
/*--- Darwin-specific syscalls, etc. syswrap-amd64-darwin.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2005-2013 Apple Inc.
Greg Parker gparker@apple.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_amd64_darwin)
#include "config.h" // DARWIN_VERS
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_xarray.h"
#include "pub_core_clientstate.h"
#include "pub_core_debuglog.h"
#include "pub_core_debuginfo.h" // VG_(di_notify_*)
#include "pub_core_transtab.h" // VG_(discard_translations)
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcfile.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-darwin.h" /* for decls of darwin-ish wrappers */
#include "priv_syswrap-main.h"
#include <mach/mach.h>
static void x86_thread_state64_from_vex(x86_thread_state64_t *mach,
VexGuestAMD64State *vex)
{
mach->__rax = vex->guest_RAX;
mach->__rbx = vex->guest_RBX;
mach->__rcx = vex->guest_RCX;
mach->__rdx = vex->guest_RDX;
mach->__rdi = vex->guest_RDI;
mach->__rsi = vex->guest_RSI;
mach->__rbp = vex->guest_RBP;
mach->__rsp = vex->guest_RSP;
mach->__rflags = LibVEX_GuestAMD64_get_rflags(vex);
mach->__rip = vex->guest_RIP;
mach->__r8 = vex->guest_R8;
mach->__r9 = vex->guest_R9;
mach->__r10 = vex->guest_R10;
mach->__r11 = vex->guest_R11;
mach->__r12 = vex->guest_R12;
mach->__r13 = vex->guest_R13;
mach->__r14 = vex->guest_R14;
mach->__r15 = vex->guest_R15;
/* GrP fixme
mach->__cs = vex->guest_CS;
mach->__fs = vex->guest_FS;
mach->__gs = vex->guest_GS;
*/
}
static void x86_float_state64_from_vex(x86_float_state64_t *mach,
VexGuestAMD64State *vex)
{
// DDD: #warning GrP fixme fp state
// JRS: what about the YMMHI bits? Are they important?
VG_(memcpy)(&mach->__fpu_xmm0, &vex->guest_YMM0, sizeof(mach->__fpu_xmm0));
VG_(memcpy)(&mach->__fpu_xmm1, &vex->guest_YMM1, sizeof(mach->__fpu_xmm1));
VG_(memcpy)(&mach->__fpu_xmm2, &vex->guest_YMM2, sizeof(mach->__fpu_xmm2));
VG_(memcpy)(&mach->__fpu_xmm3, &vex->guest_YMM3, sizeof(mach->__fpu_xmm3));
VG_(memcpy)(&mach->__fpu_xmm4, &vex->guest_YMM4, sizeof(mach->__fpu_xmm4));
VG_(memcpy)(&mach->__fpu_xmm5, &vex->guest_YMM5, sizeof(mach->__fpu_xmm5));
VG_(memcpy)(&mach->__fpu_xmm6, &vex->guest_YMM6, sizeof(mach->__fpu_xmm6));
VG_(memcpy)(&mach->__fpu_xmm7, &vex->guest_YMM7, sizeof(mach->__fpu_xmm7));
VG_(memcpy)(&mach->__fpu_xmm8, &vex->guest_YMM8, sizeof(mach->__fpu_xmm8));
VG_(memcpy)(&mach->__fpu_xmm9, &vex->guest_YMM9, sizeof(mach->__fpu_xmm9));
VG_(memcpy)(&mach->__fpu_xmm10, &vex->guest_YMM10, sizeof(mach->__fpu_xmm10));
VG_(memcpy)(&mach->__fpu_xmm11, &vex->guest_YMM11, sizeof(mach->__fpu_xmm11));
VG_(memcpy)(&mach->__fpu_xmm12, &vex->guest_YMM12, sizeof(mach->__fpu_xmm12));
VG_(memcpy)(&mach->__fpu_xmm13, &vex->guest_YMM13, sizeof(mach->__fpu_xmm13));
VG_(memcpy)(&mach->__fpu_xmm14, &vex->guest_YMM14, sizeof(mach->__fpu_xmm14));
VG_(memcpy)(&mach->__fpu_xmm15, &vex->guest_YMM15, sizeof(mach->__fpu_xmm15));
}
void thread_state_from_vex(thread_state_t mach_generic,
thread_state_flavor_t flavor,
mach_msg_type_number_t count,
VexGuestArchState *vex_generic)
{
VexGuestAMD64State *vex = (VexGuestAMD64State *)vex_generic;
switch (flavor) {
case x86_THREAD_STATE64:
vg_assert(count == x86_THREAD_STATE64_COUNT);
x86_thread_state64_from_vex((x86_thread_state64_t *)mach_generic, vex);
break;
case x86_FLOAT_STATE64:
vg_assert(count == x86_FLOAT_STATE64_COUNT);
x86_float_state64_from_vex((x86_float_state64_t *)mach_generic, vex);
break;
case x86_THREAD_STATE:
((x86_float_state_t *)mach_generic)->fsh.flavor = flavor;
((x86_float_state_t *)mach_generic)->fsh.count = count;
x86_thread_state64_from_vex(&((x86_thread_state_t *)mach_generic)->uts.ts64, vex);
break;
case x86_FLOAT_STATE:
((x86_float_state_t *)mach_generic)->fsh.flavor = flavor;
((x86_float_state_t *)mach_generic)->fsh.count = count;
x86_float_state64_from_vex(&((x86_float_state_t *)mach_generic)->ufs.fs64, vex);
break;
case x86_EXCEPTION_STATE:
VG_(printf)("thread_state_from_vex: TODO, want exception state\n");
vg_assert(0);
default:
VG_(printf)("thread_state_from_vex: flavor:%#x\n", flavor);
vg_assert(0);
}
}
static void x86_thread_state64_to_vex(const x86_thread_state64_t *mach,
VexGuestAMD64State *vex)
{
LibVEX_GuestAMD64_initialise(vex);
vex->guest_RAX = mach->__rax;
vex->guest_RBX = mach->__rbx;
vex->guest_RCX = mach->__rcx;
vex->guest_RDX = mach->__rdx;
vex->guest_RDI = mach->__rdi;
vex->guest_RSI = mach->__rsi;
vex->guest_RBP = mach->__rbp;
vex->guest_RSP = mach->__rsp;
// DDD: #warning GrP fixme eflags
vex->guest_RIP = mach->__rip;
vex->guest_R8 = mach->__r8;
vex->guest_R9 = mach->__r9;
vex->guest_R10 = mach->__r10;
vex->guest_R11 = mach->__r11;
vex->guest_R12 = mach->__r12;
vex->guest_R13 = mach->__r13;
vex->guest_R14 = mach->__r14;
vex->guest_R15 = mach->__r15;
/* GrP fixme
vex->guest_CS = mach->__cs;
vex->guest_FS = mach->__fs;
vex->guest_GS = mach->__gs;
*/
}
static void x86_float_state64_to_vex(const x86_float_state64_t *mach,
VexGuestAMD64State *vex)
{
// DDD: #warning GrP fixme fp state
// JRS: what about the YMMHI bits? Are they important?
VG_(memcpy)(&vex->guest_YMM0, &mach->__fpu_xmm0, sizeof(mach->__fpu_xmm0));
VG_(memcpy)(&vex->guest_YMM1, &mach->__fpu_xmm1, sizeof(mach->__fpu_xmm1));
VG_(memcpy)(&vex->guest_YMM2, &mach->__fpu_xmm2, sizeof(mach->__fpu_xmm2));
VG_(memcpy)(&vex->guest_YMM3, &mach->__fpu_xmm3, sizeof(mach->__fpu_xmm3));
VG_(memcpy)(&vex->guest_YMM4, &mach->__fpu_xmm4, sizeof(mach->__fpu_xmm4));
VG_(memcpy)(&vex->guest_YMM5, &mach->__fpu_xmm5, sizeof(mach->__fpu_xmm5));
VG_(memcpy)(&vex->guest_YMM6, &mach->__fpu_xmm6, sizeof(mach->__fpu_xmm6));
VG_(memcpy)(&vex->guest_YMM7, &mach->__fpu_xmm7, sizeof(mach->__fpu_xmm7));
VG_(memcpy)(&vex->guest_YMM8, &mach->__fpu_xmm8, sizeof(mach->__fpu_xmm8));
VG_(memcpy)(&vex->guest_YMM9, &mach->__fpu_xmm9, sizeof(mach->__fpu_xmm9));
VG_(memcpy)(&vex->guest_YMM10, &mach->__fpu_xmm10, sizeof(mach->__fpu_xmm10));
VG_(memcpy)(&vex->guest_YMM11, &mach->__fpu_xmm11, sizeof(mach->__fpu_xmm11));
VG_(memcpy)(&vex->guest_YMM12, &mach->__fpu_xmm12, sizeof(mach->__fpu_xmm12));
VG_(memcpy)(&vex->guest_YMM13, &mach->__fpu_xmm13, sizeof(mach->__fpu_xmm13));
VG_(memcpy)(&vex->guest_YMM14, &mach->__fpu_xmm14, sizeof(mach->__fpu_xmm14));
VG_(memcpy)(&vex->guest_YMM15, &mach->__fpu_xmm15, sizeof(mach->__fpu_xmm15));
}
void thread_state_to_vex(const thread_state_t mach_generic,
thread_state_flavor_t flavor,
mach_msg_type_number_t count,
VexGuestArchState *vex_generic)
{
VexGuestAMD64State *vex = (VexGuestAMD64State *)vex_generic;
switch(flavor) {
case x86_THREAD_STATE64:
vg_assert(count == x86_THREAD_STATE64_COUNT);
x86_thread_state64_to_vex((const x86_thread_state64_t*)mach_generic,vex);
break;
case x86_FLOAT_STATE64:
vg_assert(count == x86_FLOAT_STATE64_COUNT);
x86_float_state64_to_vex((const x86_float_state64_t*)mach_generic,vex);
break;
default:
vg_assert(0);
break;
}
}
ThreadState *build_thread(const thread_state_t state,
thread_state_flavor_t flavor,
mach_msg_type_number_t count)
{
ThreadId tid = VG_(alloc_ThreadState)();
ThreadState *tst = VG_(get_ThreadState)(tid);
vg_assert(flavor == x86_THREAD_STATE64);
vg_assert(count == x86_THREAD_STATE64_COUNT);
// Initialize machine registers
thread_state_to_vex(state, flavor, count, &tst->arch.vex);
I_die_here;
// GrP fixme signals, sig_mask, tmp_sig_mask, os_state.parent
find_stack_segment(tid, tst->arch.vex.guest_RSP);
return tst;
}
// Edit the thread state to send to the real kernel.
// The real thread will run start_thread_NORETURN(tst)
// on a separate non-client stack.
void hijack_thread_state(thread_state_t mach_generic,
thread_state_flavor_t flavor,
mach_msg_type_number_t count,
ThreadState *tst)
{
x86_thread_state64_t *mach = (x86_thread_state64_t *)mach_generic;
char *stack;
vg_assert(flavor == x86_THREAD_STATE64);
vg_assert(count == x86_THREAD_STATE64_COUNT);
stack = (char *)allocstack(tst->tid);
stack -= 64+320; // make room for top frame
memset(stack, 0, 64+320); // ...and clear it
*(uintptr_t *)stack = 0; // push fake return address
mach->__rdi = (uintptr_t)tst; // arg1 = tst
mach->__rip = (uintptr_t)&start_thread_NORETURN;
mach->__rsp = (uintptr_t)stack;
}
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.*/
__attribute__((noreturn))
void call_on_new_stack_0_1 ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
// %rdi == stack (must be 16-byte aligned)
// %rsi == retaddr
// %rdx == f
// %rcx == arg1
asm(
".globl _call_on_new_stack_0_1\n"
"_call_on_new_stack_0_1:\n"
" movq %rsp, %rbp\n" // remember old stack pointer
" movq %rdi, %rsp\n" // set new stack
" movq %rcx, %rdi\n" // set arg1
" pushq %rsi\n" // retaddr to new stack
" pushq %rdx\n" // f to new stack
" movq $0, %rax\n" // zero all other GP regs
" movq $0, %rbx\n"
" movq $0, %rcx\n"
" movq $0, %rdx\n"
" movq $0, %rsi\n"
" movq $0, %rbp\n"
" movq $0, %r8\n"
" movq $0, %r9\n"
" movq $0, %r10\n"
" movq $0, %r11\n"
" movq $0, %r12\n"
" movq $0, %r13\n"
" movq $0, %r14\n"
" movq $0, %r15\n"
" ret\n" // jump to f
" ud2\n" // should never get here
);
asm(
".globl _pthread_hijack_asm\n"
"_pthread_hijack_asm:\n"
" movq %rsp,%rbp\n"
" push $0\n" // alignment pad
" push %rbp\n" // original sp
// other values stay where they are in registers
" push $0\n" // fake return address
" jmp _pthread_hijack\n"
);
void pthread_hijack(Addr self, Addr kport, Addr func, Addr func_arg,
Addr stacksize, Addr flags, Addr sp)
{
vki_sigset_t blockall;
ThreadState *tst = (ThreadState *)func_arg;
VexGuestAMD64State *vex = &tst->arch.vex;
// VG_(printf)("pthread_hijack pthread %p, machthread %p, func %p, arg %p, stack %p, flags %p, stack %p\n", self, kport, func, func_arg, stacksize, flags, sp);
// Wait for parent thread's permission.
// The parent thread holds V's lock on our behalf.
semaphore_wait(tst->os_state.child_go);
/* Start the thread with all signals blocked. VG_(scheduler) will
set the mask correctly when we finally get there. */
VG_(sigfillset)(&blockall);
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, NULL);
// Set thread's registers
// Do this FIRST because some code below tries to collect a backtrace,
// which requires valid register data.
LibVEX_GuestAMD64_initialise(vex);
vex->guest_RIP = pthread_starter;
vex->guest_RDI = self;
vex->guest_RSI = kport;
vex->guest_RDX = func;
vex->guest_RCX = tst->os_state.func_arg;
vex->guest_R8 = stacksize;
vex->guest_R9 = flags;
vex->guest_RSP = sp;
// Record thread's stack and Mach port and pthread struct
tst->os_state.pthread = self;
tst->os_state.lwpid = kport;
record_named_port(tst->tid, kport, MACH_PORT_RIGHT_SEND, "thread-%p");
if ((flags & 0x01000000) == 0) {
// kernel allocated stack - needs mapping
Addr stack = VG_PGROUNDUP(sp) - stacksize;
tst->client_stack_highest_byte = stack+stacksize-1;
tst->client_stack_szB = stacksize;
// pthread structure
ML_(notify_core_and_tool_of_mmap)(
stack+stacksize, pthread_structsize,
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_PRIVATE, -1, 0);
// stack contents
ML_(notify_core_and_tool_of_mmap)(
stack, stacksize,
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_PRIVATE, -1, 0);
// guard page
ML_(notify_core_and_tool_of_mmap)(
stack-VKI_PAGE_SIZE, VKI_PAGE_SIZE,
0, VKI_MAP_PRIVATE, -1, 0);
} else {
// client allocated stack
find_stack_segment(tst->tid, sp);
}
ML_(sync_mappings)("after", "pthread_hijack", 0);
// DDD: should this be here rather than in POST(sys_bsdthread_create)?
// But we don't have ptid here...
//VG_TRACK ( pre_thread_ll_create, ptid, tst->tid );
// Tell parent thread's POST(sys_bsdthread_create) that we're done
// initializing registers and mapping memory.
semaphore_signal(tst->os_state.child_done);
// LOCK IS GONE BELOW THIS POINT
// Go!
call_on_new_stack_0_1(tst->os_state.valgrind_stack_init_SP, 0,
start_thread_NORETURN, (Word)tst);
/*NOTREACHED*/
vg_assert(0);
}
asm(
".globl _wqthread_hijack_asm\n"
"_wqthread_hijack_asm:\n"
" movq %rsp,%r9\n" // original sp
// other values stay where they are in registers
" push $0\n" // fake return address
" jmp _wqthread_hijack\n"
);
/* wqthread note: The kernel may create or destroy pthreads in the
wqthread pool at any time with no userspace interaction,
and wqthread_start may be entered at any time with no userspace
interaction.
To handle this in valgrind, we create and destroy a valgrind
thread for every work item.
*/
void wqthread_hijack(Addr self, Addr kport, Addr stackaddr, Addr workitem,
Int reuse, Addr sp)
{
ThreadState *tst;
VexGuestAMD64State *vex;
Addr stack;
SizeT stacksize;
vki_sigset_t blockall;
/* When we enter here we hold no lock (!), so we better acquire it
pronto. Why do we hold no lock? Because (presumably) the only
way to get here is as a result of a SfMayBlock syscall
"workq_ops(WQOPS_THREAD_RETURN)", which will have dropped the
lock. At least that's clear for the 'reuse' case. The
non-reuse case? Dunno, perhaps it's a new thread the kernel
pulled out of a hat. In any case we still need to take a
lock. */
VG_(acquire_BigLock_LL)("wqthread_hijack");
if (0) VG_(printf)(
"wqthread_hijack: self %#lx, kport %#lx, "
"stackaddr %#lx, workitem %#lx, reuse/flags %x, sp %#lx\n",
self, kport, stackaddr, workitem, reuse, sp);
/* Start the thread with all signals blocked. VG_(scheduler) will
set the mask correctly when we finally get there. */
VG_(sigfillset)(&blockall);
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, NULL);
/* For 10.7 and earlier, |reuse| appeared to be used as a simple
boolean. In 10.8 and later its name changed to |flags| and has
various other bits OR-d into it too, so it's necessary to fish
out just the relevant parts. Hence: */
# if DARWIN_VERS <= DARWIN_10_7
Bool is_reuse = reuse != 0;
# elif DARWIN_VERS == DARWIN_10_8 || DARWIN_VERS == DARWIN_10_9
Bool is_reuse = (reuse & 0x20000 /* == WQ_FLAG_THREAD_REUSE */) != 0;
# endif
if (is_reuse) {
/* For whatever reason, tst->os_state.pthread appear to have a
constant offset of 96 on 10.7, but zero on 10.6 and 10.5. No
idea why. */
# if DARWIN_VERS <= DARWIN_10_6
UWord magic_delta = 0;
# elif DARWIN_VERS == DARWIN_10_7 || DARWIN_VERS == DARWIN_10_8
UWord magic_delta = 0x60;
# elif DARWIN_VERS == DARWIN_10_9
UWord magic_delta = 0xE0;
# else
# error "magic_delta: to be computed on new OS version"
// magic_delta = tst->os_state.pthread - self
# endif
// This thread already exists; we're merely re-entering
// after leaving via workq_ops(WQOPS_THREAD_RETURN).
// Don't allocate any V thread resources.
// Do reset thread registers.
ThreadId tid = VG_(lwpid_to_vgtid)(kport);
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(mach_thread_self() == kport);
tst = VG_(get_ThreadState)(tid);
if (0) VG_(printf)("wqthread_hijack reuse %s: tid %d, tst %p, "
"tst->os_state.pthread %#lx\n",
tst->os_state.pthread == self ? "SAME" : "DIFF",
tid, tst, tst->os_state.pthread);
vex = &tst->arch.vex;
vg_assert(tst->os_state.pthread - magic_delta == self);
}
else {
// This is a new thread.
tst = VG_(get_ThreadState)(VG_(alloc_ThreadState)());
vex = &tst->arch.vex;
allocstack(tst->tid);
LibVEX_GuestAMD64_initialise(vex);
}
// Set thread's registers
// Do this FIRST because some code below tries to collect a backtrace,
// which requires valid register data.
vex->guest_RIP = wqthread_starter;
vex->guest_RDI = self;
vex->guest_RSI = kport;
vex->guest_RDX = stackaddr;
vex->guest_RCX = workitem;
vex->guest_R8 = reuse;
vex->guest_R9 = 0;
vex->guest_RSP = sp;
stacksize = 512*1024; // wq stacks are always DEFAULT_STACK_SIZE
stack = VG_PGROUNDUP(sp) - stacksize;
if (is_reuse) {
// Continue V's thread back in the scheduler.
// The client thread is of course in another location entirely.
/* Drop the lock before going into
ML_(wqthread_continue_NORETURN). The latter will immediately
attempt to reacquire it in non-LL mode, which is a bit
wasteful but I don't think is harmful. A better solution
would be to not drop the lock but instead "upgrade" it from a
LL lock to a full lock, but that's too much like hard work
right now. */
VG_(release_BigLock_LL)("wqthread_hijack(1)");
ML_(wqthread_continue_NORETURN)(tst->tid);
}
else {
// Record thread's stack and Mach port and pthread struct
tst->os_state.pthread = self;
tst->os_state.lwpid = kport;
record_named_port(tst->tid, kport, MACH_PORT_RIGHT_SEND, "wqthread-%p");
// kernel allocated stack - needs mapping
tst->client_stack_highest_byte = stack+stacksize-1;
tst->client_stack_szB = stacksize;
// GrP fixme scheduler lock?!
// pthread structure
ML_(notify_core_and_tool_of_mmap)(
stack+stacksize, pthread_structsize,
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_PRIVATE, -1, 0);
// stack contents
// GrP fixme uninitialized!
ML_(notify_core_and_tool_of_mmap)(
stack, stacksize,
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_PRIVATE, -1, 0);
// guard page
// GrP fixme ban_mem_stack!
ML_(notify_core_and_tool_of_mmap)(
stack-VKI_PAGE_SIZE, VKI_PAGE_SIZE,
0, VKI_MAP_PRIVATE, -1, 0);
ML_(sync_mappings)("after", "wqthread_hijack", 0);
// Go!
/* Same comments as the 'release' in the then-clause.
start_thread_NORETURN calls run_thread_NORETURN calls
thread_wrapper which acquires the lock before continuing.
Let's hope nothing non-thread-local happens until that point.
DDD: I think this is plain wrong .. if we get to
thread_wrapper not holding the lock, and someone has recycled
this thread slot in the meantime, we're hosed. Is that
possible, though? */
VG_(release_BigLock_LL)("wqthread_hijack(2)");
call_on_new_stack_0_1(tst->os_state.valgrind_stack_init_SP, 0,
start_thread_NORETURN, (Word)tst);
}
/*NOTREACHED*/
vg_assert(0);
}
#endif // defined(VGP_amd64_darwin)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/