mirror of
https://github.com/Zenithsiz/ftmemsim-valgrind.git
synced 2026-02-18 16:58:28 +00:00
to add PPC64 LE support. The other two patches can be found in Bugzillas 334384 and 334836. POWER PC, add the functional Little Endian support, patch 2 The IBM POWER processor now supports both Big Endian and Little Endian. The ABI for Little Endian also changes. Specifically, the function descriptor is not used, the stack size changed, accessing the TOC changed. Functions now have a local and a global entry point. Register r2 contains the TOC for local calls and register r12 contains the TOC for global calls. This patch makes the functional changes to the Valgrind tool. The patch makes the changes needed for the none/tests/ppc32 and none/tests/ppc64 Makefile.am. A number of the ppc specific tests have Endian dependencies that are not fixed in this patch. They are fixed in the next patch. Per Julian's comments renamed coregrind/m_dispatch/dispatch-ppc64-linux.S to coregrind/m_dispatch/dispatch-ppc64be-linux.S Created new file for LE coregrind/m_dispatch/dispatch-ppc64le-linux.S. The same was done for coregrind/m_syswrap/syscall-ppc-linux.S. Signed-off-by: Carl Love <carll@us.ibm.com> git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14239
537 lines
17 KiB
C
537 lines
17 KiB
C
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- User-mode execve() for ELF executables m_ume_elf.c ---*/
|
|
/*--------------------------------------------------------------------*/
|
|
|
|
/*
|
|
This file is part of Valgrind, a dynamic binary instrumentation
|
|
framework.
|
|
|
|
Copyright (C) 2000-2013 Julian Seward
|
|
jseward@acm.org
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307, USA.
|
|
|
|
The GNU General Public License is contained in the file COPYING.
|
|
*/
|
|
|
|
#if defined(VGO_linux)
|
|
|
|
#include "pub_core_basics.h"
|
|
#include "pub_core_vki.h"
|
|
|
|
#include "pub_core_aspacemgr.h" // various mapping fns
|
|
#include "pub_core_debuglog.h"
|
|
#include "pub_core_libcassert.h" // VG_(exit), vg_assert
|
|
#include "pub_core_libcbase.h" // VG_(memcmp), etc
|
|
#include "pub_core_libcprint.h"
|
|
#include "pub_core_libcfile.h" // VG_(open) et al
|
|
#include "pub_core_machine.h" // VG_ELF_CLASS (XXX: which should be moved)
|
|
#include "pub_core_mallocfree.h" // VG_(malloc), VG_(free)
|
|
#include "pub_core_syscall.h" // VG_(strerror)
|
|
#include "pub_core_ume.h" // self
|
|
|
|
#include "priv_ume.h"
|
|
|
|
/* --- !!! --- EXTERNAL HEADERS start --- !!! --- */
|
|
#define _GNU_SOURCE
|
|
#define _FILE_OFFSET_BITS 64
|
|
/* This is for ELF types etc, and also the AT_ constants. */
|
|
#include <elf.h>
|
|
/* --- !!! --- EXTERNAL HEADERS end --- !!! --- */
|
|
|
|
|
|
#if VG_WORDSIZE == 8
|
|
#define ESZ(x) Elf64_##x
|
|
#elif VG_WORDSIZE == 4
|
|
#define ESZ(x) Elf32_##x
|
|
#else
|
|
#error VG_WORDSIZE needs to ==4 or ==8
|
|
#endif
|
|
|
|
struct elfinfo
|
|
{
|
|
ESZ(Ehdr) e;
|
|
ESZ(Phdr) *p;
|
|
Int fd;
|
|
};
|
|
|
|
static void check_mmap(SysRes res, Addr base, SizeT len)
|
|
{
|
|
if (sr_isError(res)) {
|
|
VG_(printf)("valgrind: mmap(0x%llx, %lld) failed in UME "
|
|
"with error %lu (%s).\n",
|
|
(ULong)base, (Long)len,
|
|
sr_Err(res), VG_(strerror)(sr_Err(res)) );
|
|
if (sr_Err(res) == VKI_EINVAL) {
|
|
VG_(printf)("valgrind: this can be caused by executables with "
|
|
"very large text, data or bss segments.\n");
|
|
}
|
|
VG_(exit)(1);
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Loading ELF files ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static
|
|
struct elfinfo *readelf(Int fd, const HChar *filename)
|
|
{
|
|
SysRes sres;
|
|
struct elfinfo *e = VG_(malloc)("ume.re.1", sizeof(*e));
|
|
Int phsz;
|
|
|
|
vg_assert(e);
|
|
e->fd = fd;
|
|
|
|
sres = VG_(pread)(fd, &e->e, sizeof(e->e), 0);
|
|
if (sr_isError(sres) || sr_Res(sres) != sizeof(e->e)) {
|
|
VG_(printf)("valgrind: %s: can't read ELF header: %s\n",
|
|
filename, VG_(strerror)(sr_Err(sres)));
|
|
goto bad;
|
|
}
|
|
|
|
if (VG_(memcmp)(&e->e.e_ident[0], ELFMAG, SELFMAG) != 0) {
|
|
VG_(printf)("valgrind: %s: bad ELF magic number\n", filename);
|
|
goto bad;
|
|
}
|
|
if (e->e.e_ident[EI_CLASS] != VG_ELF_CLASS) {
|
|
VG_(printf)("valgrind: wrong ELF executable class "
|
|
"(eg. 32-bit instead of 64-bit)\n");
|
|
goto bad;
|
|
}
|
|
if (e->e.e_ident[EI_DATA] != VG_ELF_DATA2XXX) {
|
|
VG_(printf)("valgrind: executable has wrong endian-ness\n");
|
|
goto bad;
|
|
}
|
|
if (!(e->e.e_type == ET_EXEC || e->e.e_type == ET_DYN)) {
|
|
VG_(printf)("valgrind: this is not an executable\n");
|
|
goto bad;
|
|
}
|
|
|
|
if (e->e.e_machine != VG_ELF_MACHINE) {
|
|
VG_(printf)("valgrind: executable is not for "
|
|
"this architecture\n");
|
|
goto bad;
|
|
}
|
|
|
|
if (e->e.e_phentsize != sizeof(ESZ(Phdr))) {
|
|
VG_(printf)("valgrind: sizeof ELF Phdr wrong\n");
|
|
goto bad;
|
|
}
|
|
|
|
phsz = sizeof(ESZ(Phdr)) * e->e.e_phnum;
|
|
e->p = VG_(malloc)("ume.re.2", phsz);
|
|
vg_assert(e->p);
|
|
|
|
sres = VG_(pread)(fd, e->p, phsz, e->e.e_phoff);
|
|
if (sr_isError(sres) || sr_Res(sres) != phsz) {
|
|
VG_(printf)("valgrind: can't read phdr: %s\n",
|
|
VG_(strerror)(sr_Err(sres)));
|
|
VG_(free)(e->p);
|
|
goto bad;
|
|
}
|
|
|
|
return e;
|
|
|
|
bad:
|
|
VG_(free)(e);
|
|
return NULL;
|
|
}
|
|
|
|
/* Map an ELF file. Returns the brk address. */
|
|
static
|
|
ESZ(Addr) mapelf(struct elfinfo *e, ESZ(Addr) base)
|
|
{
|
|
Int i;
|
|
SysRes res;
|
|
ESZ(Addr) elfbrk = 0;
|
|
|
|
for (i = 0; i < e->e.e_phnum; i++) {
|
|
ESZ(Phdr) *ph = &e->p[i];
|
|
ESZ(Addr) addr, brkaddr;
|
|
ESZ(Word) memsz;
|
|
|
|
if (ph->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
addr = ph->p_vaddr+base;
|
|
memsz = ph->p_memsz;
|
|
brkaddr = addr+memsz;
|
|
|
|
if (brkaddr > elfbrk)
|
|
elfbrk = brkaddr;
|
|
}
|
|
|
|
for (i = 0; i < e->e.e_phnum; i++) {
|
|
ESZ(Phdr) *ph = &e->p[i];
|
|
ESZ(Addr) addr, bss, brkaddr;
|
|
ESZ(Off) off;
|
|
ESZ(Word) filesz;
|
|
ESZ(Word) memsz;
|
|
unsigned prot = 0;
|
|
|
|
if (ph->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
if (ph->p_flags & PF_X) prot |= VKI_PROT_EXEC;
|
|
if (ph->p_flags & PF_W) prot |= VKI_PROT_WRITE;
|
|
if (ph->p_flags & PF_R) prot |= VKI_PROT_READ;
|
|
|
|
addr = ph->p_vaddr+base;
|
|
off = ph->p_offset;
|
|
filesz = ph->p_filesz;
|
|
bss = addr+filesz;
|
|
memsz = ph->p_memsz;
|
|
brkaddr = addr+memsz;
|
|
|
|
// Tom says: In the following, do what the Linux kernel does and only
|
|
// map the pages that are required instead of rounding everything to
|
|
// the specified alignment (ph->p_align). (AMD64 doesn't work if you
|
|
// use ph->p_align -- part of stage2's memory gets trashed somehow.)
|
|
//
|
|
// The condition handles the case of a zero-length segment.
|
|
if (VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr) > 0) {
|
|
if (0) VG_(debugLog)(0,"ume","mmap_file_fixed_client #1\n");
|
|
res = VG_(am_mmap_file_fixed_client)(
|
|
VG_PGROUNDDN(addr),
|
|
VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr),
|
|
prot, /*VKI_MAP_FIXED|VKI_MAP_PRIVATE, */
|
|
e->fd, VG_PGROUNDDN(off)
|
|
);
|
|
if (0) VG_(am_show_nsegments)(0,"after #1");
|
|
check_mmap(res, VG_PGROUNDDN(addr),
|
|
VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr));
|
|
}
|
|
|
|
// if memsz > filesz, fill the remainder with zeroed pages
|
|
if (memsz > filesz) {
|
|
UInt bytes;
|
|
|
|
bytes = VG_PGROUNDUP(brkaddr)-VG_PGROUNDUP(bss);
|
|
if (bytes > 0) {
|
|
if (0) VG_(debugLog)(0,"ume","mmap_anon_fixed_client #2\n");
|
|
res = VG_(am_mmap_anon_fixed_client)(
|
|
VG_PGROUNDUP(bss), bytes,
|
|
prot
|
|
);
|
|
if (0) VG_(am_show_nsegments)(0,"after #2");
|
|
check_mmap(res, VG_PGROUNDUP(bss), bytes);
|
|
}
|
|
|
|
bytes = bss & (VKI_PAGE_SIZE - 1);
|
|
|
|
// The 'prot' condition allows for a read-only bss
|
|
if ((prot & VKI_PROT_WRITE) && (bytes > 0)) {
|
|
bytes = VKI_PAGE_SIZE - bytes;
|
|
VG_(memset)((void *)bss, 0, bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
return elfbrk;
|
|
}
|
|
|
|
Bool VG_(match_ELF)(const void *hdr, Int len)
|
|
{
|
|
const ESZ(Ehdr) *e = hdr;
|
|
return (len > sizeof(*e)) && VG_(memcmp)(&e->e_ident[0], ELFMAG, SELFMAG) == 0;
|
|
}
|
|
|
|
|
|
/* load_ELF pulls an ELF executable into the address space, prepares
|
|
it for execution, and writes info about it into INFO. In
|
|
particular it fills in .init_eip, which is the starting point.
|
|
|
|
Returns zero on success, non-zero (a VKI_E.. value) on failure.
|
|
|
|
The sequence of activities is roughly as follows:
|
|
|
|
- use readelf() to extract program header info from the exe file.
|
|
|
|
- scan the program header, collecting info (not sure what all those
|
|
info-> fields are, or whether they are used, but still) and in
|
|
particular looking out fo the PT_INTERP header, which describes
|
|
the interpreter. If such a field is found, the space needed to
|
|
hold the interpreter is computed into interp_size.
|
|
|
|
- map the executable in, by calling mapelf(). This maps in all
|
|
loadable sections, and I _think_ also creates any .bss areas
|
|
required. mapelf() returns the address just beyond the end of
|
|
the furthest-along mapping it creates. The executable is mapped
|
|
starting at EBASE, which is usually read from it (eg, 0x8048000
|
|
etc) except if it's a PIE, in which case I'm not sure what
|
|
happens.
|
|
|
|
The returned address is recorded in info->brkbase as the start
|
|
point of the brk (data) segment, as it is traditional to place
|
|
the data segment just after the executable. Neither load_ELF nor
|
|
mapelf creates the brk segment, though: that is for the caller of
|
|
load_ELF to attend to.
|
|
|
|
- If the initial phdr scan didn't find any mention of an
|
|
interpreter (interp == NULL), this must be a statically linked
|
|
executable, and we're pretty much done.
|
|
|
|
- Otherwise, we need to use mapelf() a second time to load the
|
|
interpreter. The interpreter can go anywhere, but mapelf() wants
|
|
to be told a specific address to put it at. So an advisory query
|
|
is passed to aspacem, asking where it would put an anonymous
|
|
client mapping of size INTERP_SIZE. That address is then used
|
|
as the mapping address for the interpreter.
|
|
|
|
- The entry point in INFO is set to the interpreter's entry point,
|
|
and we're done. */
|
|
Int VG_(load_ELF)(Int fd, const HChar* name, /*MOD*/ExeInfo* info)
|
|
{
|
|
SysRes sres;
|
|
struct elfinfo *e;
|
|
struct elfinfo *interp = NULL;
|
|
ESZ(Addr) minaddr = ~0; /* lowest mapped address */
|
|
ESZ(Addr) maxaddr = 0; /* highest mapped address */
|
|
ESZ(Addr) interp_addr = 0; /* interpreter (ld.so) address */
|
|
ESZ(Word) interp_size = 0; /* interpreter size */
|
|
/* ESZ(Word) interp_align = VKI_PAGE_SIZE; */ /* UNUSED */
|
|
Int i;
|
|
void *entry;
|
|
ESZ(Addr) ebase = 0;
|
|
|
|
# if defined(HAVE_PIE)
|
|
ebase = info->exe_base;
|
|
# endif
|
|
|
|
e = readelf(fd, name);
|
|
|
|
if (e == NULL)
|
|
return VKI_ENOEXEC;
|
|
|
|
/* The kernel maps position-independent executables at TASK_SIZE*2/3;
|
|
duplicate this behavior as close as we can. */
|
|
if (e->e.e_type == ET_DYN && ebase == 0) {
|
|
ebase = VG_PGROUNDDN(info->exe_base
|
|
+ (info->exe_end - info->exe_base) * 2 / 3);
|
|
/* We really don't want to load PIEs at zero or too close. It
|
|
works, but it's unrobust (NULL pointer reads and writes
|
|
become legit, which is really bad) and causes problems for
|
|
exp-ptrcheck, which assumes all numbers below 1MB are
|
|
nonpointers. So, hackily, move it above 1MB. */
|
|
/* Later .. it appears ppc32-linux tries to put [vdso] at 1MB,
|
|
which totally screws things up, because nothing else can go
|
|
there. The size of [vdso] is around 2 or 3 pages, so bump
|
|
the hacky load addess along by 8 * VKI_PAGE_SIZE to be safe. */
|
|
/* Later .. on mips64 we can't use 0x108000, because mapelf will
|
|
fail. */
|
|
# if defined(VGP_mips64_linux)
|
|
if (ebase < 0x100000)
|
|
ebase = 0x100000;
|
|
# else
|
|
vg_assert(VKI_PAGE_SIZE >= 4096); /* stay sane */
|
|
ESZ(Addr) hacky_load_address = 0x100000 + 8 * VKI_PAGE_SIZE;
|
|
if (ebase < hacky_load_address)
|
|
ebase = hacky_load_address;
|
|
# endif
|
|
}
|
|
|
|
info->phnum = e->e.e_phnum;
|
|
info->entry = e->e.e_entry + ebase;
|
|
info->phdr = 0;
|
|
info->stack_prot = VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC;
|
|
|
|
for (i = 0; i < e->e.e_phnum; i++) {
|
|
ESZ(Phdr) *ph = &e->p[i];
|
|
|
|
switch(ph->p_type) {
|
|
case PT_PHDR:
|
|
info->phdr = ph->p_vaddr + ebase;
|
|
break;
|
|
|
|
case PT_LOAD:
|
|
if (ph->p_vaddr < minaddr)
|
|
minaddr = ph->p_vaddr;
|
|
if (ph->p_vaddr+ph->p_memsz > maxaddr)
|
|
maxaddr = ph->p_vaddr+ph->p_memsz;
|
|
break;
|
|
|
|
case PT_INTERP: {
|
|
HChar *buf = VG_(malloc)("ume.LE.1", ph->p_filesz+1);
|
|
Int j;
|
|
Int intfd;
|
|
Int baseaddr_set;
|
|
|
|
vg_assert(buf);
|
|
VG_(pread)(fd, buf, ph->p_filesz, ph->p_offset);
|
|
buf[ph->p_filesz] = '\0';
|
|
|
|
sres = VG_(open)(buf, VKI_O_RDONLY, 0);
|
|
if (sr_isError(sres)) {
|
|
VG_(printf)("valgrind: m_ume.c: can't open interpreter\n");
|
|
VG_(exit)(1);
|
|
}
|
|
intfd = sr_Res(sres);
|
|
|
|
interp = readelf(intfd, buf);
|
|
if (interp == NULL) {
|
|
VG_(printf)("valgrind: m_ume.c: can't read interpreter\n");
|
|
return 1;
|
|
}
|
|
VG_(free)(buf);
|
|
|
|
baseaddr_set = 0;
|
|
for (j = 0; j < interp->e.e_phnum; j++) {
|
|
ESZ(Phdr) *iph = &interp->p[j];
|
|
ESZ(Addr) end;
|
|
|
|
if (iph->p_type != PT_LOAD || iph->p_memsz == 0)
|
|
continue;
|
|
|
|
if (!baseaddr_set) {
|
|
interp_addr = iph->p_vaddr;
|
|
/* interp_align = iph->p_align; */ /* UNUSED */
|
|
baseaddr_set = 1;
|
|
}
|
|
|
|
/* assumes that all segments in the interp are close */
|
|
end = (iph->p_vaddr - interp_addr) + iph->p_memsz;
|
|
|
|
if (end > interp_size)
|
|
interp_size = end;
|
|
}
|
|
break;
|
|
|
|
# if defined(PT_GNU_STACK)
|
|
/* Android's elf.h doesn't appear to have PT_GNU_STACK. */
|
|
case PT_GNU_STACK:
|
|
if ((ph->p_flags & PF_X) == 0) info->stack_prot &= ~VKI_PROT_EXEC;
|
|
if ((ph->p_flags & PF_W) == 0) info->stack_prot &= ~VKI_PROT_WRITE;
|
|
if ((ph->p_flags & PF_R) == 0) info->stack_prot &= ~VKI_PROT_READ;
|
|
break;
|
|
# endif
|
|
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (info->phdr == 0)
|
|
info->phdr = minaddr + ebase + e->e.e_phoff;
|
|
|
|
if (info->exe_base != info->exe_end) {
|
|
if (minaddr >= maxaddr ||
|
|
(minaddr + ebase < info->exe_base ||
|
|
maxaddr + ebase > info->exe_end)) {
|
|
VG_(printf)("Executable range %p-%p is outside the\n"
|
|
"acceptable range %p-%p\n",
|
|
(char *)minaddr + ebase, (char *)maxaddr + ebase,
|
|
(char *)info->exe_base, (char *)info->exe_end);
|
|
return VKI_ENOMEM;
|
|
}
|
|
}
|
|
|
|
info->brkbase = mapelf(e, ebase); /* map the executable */
|
|
|
|
if (info->brkbase == 0)
|
|
return VKI_ENOMEM;
|
|
|
|
if (interp != NULL) {
|
|
/* reserve a chunk of address space for interpreter */
|
|
MapRequest mreq;
|
|
Addr advised;
|
|
Bool ok;
|
|
|
|
/* Don't actually reserve the space. Just get an advisory
|
|
indicating where it would be allocated, and pass that to
|
|
mapelf(), which in turn asks aspacem to do some fixed maps at
|
|
the specified address. This is a bit of hack, but it should
|
|
work because there should be no intervening transactions with
|
|
aspacem which could cause those fixed maps to fail.
|
|
|
|
Placement policy is:
|
|
|
|
if the interpreter asks to be loaded at zero
|
|
ignore that and put it wherever we like (mappings at zero
|
|
are bad news)
|
|
else
|
|
try and put it where it asks for, but if that doesn't work,
|
|
just put it anywhere.
|
|
*/
|
|
if (interp_addr == 0) {
|
|
mreq.rkind = MAny;
|
|
mreq.start = 0;
|
|
mreq.len = interp_size;
|
|
} else {
|
|
mreq.rkind = MHint;
|
|
mreq.start = interp_addr;
|
|
mreq.len = interp_size;
|
|
}
|
|
|
|
advised = VG_(am_get_advisory)( &mreq, True/*client*/, &ok );
|
|
|
|
if (!ok) {
|
|
/* bomb out */
|
|
SysRes res = VG_(mk_SysRes_Error)(VKI_EINVAL);
|
|
if (0) VG_(printf)("reserve for interp: failed\n");
|
|
check_mmap(res, (Addr)interp_addr, interp_size);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
(void)mapelf(interp, (ESZ(Addr))advised - interp_addr);
|
|
|
|
VG_(close)(interp->fd);
|
|
|
|
entry = (void *)(advised - interp_addr + interp->e.e_entry);
|
|
|
|
info->interp_offset = advised - interp_addr;
|
|
|
|
VG_(free)(interp->p);
|
|
VG_(free)(interp);
|
|
} else
|
|
entry = (void *)(ebase + e->e.e_entry);
|
|
|
|
info->exe_base = minaddr + ebase;
|
|
info->exe_end = maxaddr + ebase;
|
|
|
|
#if defined(VGP_ppc64be_linux)
|
|
/* On PPC64BE, ELF ver 1, a func ptr is represented by a TOC entry ptr.
|
|
This TOC entry contains three words; the first word is the function
|
|
address, the second word is the TOC ptr (r2), and the third word
|
|
is the static chain value. */
|
|
info->init_ip = ((ULong*)entry)[0];
|
|
info->init_toc = ((ULong*)entry)[1];
|
|
info->init_ip += info->interp_offset;
|
|
info->init_toc += info->interp_offset;
|
|
#elif defined(VGP_ppc64le_linux)
|
|
/* On PPC64LE, ELF ver 2. API doesn't use a func ptr */
|
|
info->init_ip = (Addr)entry;
|
|
info->init_toc = 0; /* meaningless on this platform */
|
|
#else
|
|
info->init_ip = (Addr)entry;
|
|
info->init_toc = 0; /* meaningless on this platform */
|
|
#endif
|
|
VG_(free)(e->p);
|
|
VG_(free)(e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // defined(VGO_linux)
|
|
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- end ---*/
|
|
/*--------------------------------------------------------------------*/
|