mirror of
https://github.com/Zenithsiz/ftmemsim-valgrind.git
synced 2026-02-04 02:18:37 +00:00
assertions about the return value, rather than asserting the non-NULL-ness of the function's address :) Classic beginner's mistake, compounded by C's crappy (non-existent) type system, which allows me to silently confuse Bool with Pointer-to-Function. What a great programming language. Come back Haskell, all is forgiven. git-svn-id: svn://svn.valgrind.org/valgrind/trunk@228
2374 lines
71 KiB
C
2374 lines
71 KiB
C
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- Maintain bitmaps of memory, tracking the accessibility (A) ---*/
|
|
/*--- and validity (V) status of each byte. ---*/
|
|
/*--- vg_memory.c ---*/
|
|
/*--------------------------------------------------------------------*/
|
|
|
|
/*
|
|
This file is part of Valgrind, an x86 protected-mode emulator
|
|
designed for debugging and profiling binaries on x86-Unixes.
|
|
|
|
Copyright (C) 2000-2002 Julian Seward
|
|
jseward@acm.org
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307, USA.
|
|
|
|
The GNU General Public License is contained in the file LICENSE.
|
|
*/
|
|
|
|
#include "vg_include.h"
|
|
|
|
/* Define to debug the mem audit system. */
|
|
/* #define VG_DEBUG_MEMORY */
|
|
|
|
/* Define to debug the memory-leak-detector. */
|
|
/* #define VG_DEBUG_LEAKCHECK */
|
|
|
|
/* Define to collect detailed performance info. */
|
|
/* #define VG_PROFILE_MEMORY */
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Low-level support for memory checking. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/*
|
|
All reads and writes are checked against a memory map, which
|
|
records the state of all memory in the process. The memory map is
|
|
organised like this:
|
|
|
|
The top 16 bits of an address are used to index into a top-level
|
|
map table, containing 65536 entries. Each entry is a pointer to a
|
|
second-level map, which records the accesibililty and validity
|
|
permissions for the 65536 bytes indexed by the lower 16 bits of the
|
|
address. Each byte is represented by nine bits, one indicating
|
|
accessibility, the other eight validity. So each second-level map
|
|
contains 73728 bytes. This two-level arrangement conveniently
|
|
divides the 4G address space into 64k lumps, each size 64k bytes.
|
|
|
|
All entries in the primary (top-level) map must point to a valid
|
|
secondary (second-level) map. Since most of the 4G of address
|
|
space will not be in use -- ie, not mapped at all -- there is a
|
|
distinguished secondary map, which indicates `not addressible and
|
|
not valid' writeable for all bytes. Entries in the primary map for
|
|
which the entire 64k is not in use at all point at this
|
|
distinguished map.
|
|
|
|
[...] lots of stuff deleted due to out of date-ness
|
|
|
|
As a final optimisation, the alignment and address checks for
|
|
4-byte loads and stores are combined in a neat way. The primary
|
|
map is extended to have 262144 entries (2^18), rather than 2^16.
|
|
The top 3/4 of these entries are permanently set to the
|
|
distinguished secondary map. For a 4-byte load/store, the
|
|
top-level map is indexed not with (addr >> 16) but instead f(addr),
|
|
where
|
|
|
|
f( XXXX XXXX XXXX XXXX ____ ____ ____ __YZ )
|
|
= ____ ____ ____ __YZ XXXX XXXX XXXX XXXX or
|
|
= ____ ____ ____ __ZY XXXX XXXX XXXX XXXX
|
|
|
|
ie the lowest two bits are placed above the 16 high address bits.
|
|
If either of these two bits are nonzero, the address is misaligned;
|
|
this will select a secondary map from the upper 3/4 of the primary
|
|
map. Because this is always the distinguished secondary map, a
|
|
(bogus) address check failure will result. The failure handling
|
|
code can then figure out whether this is a genuine addr check
|
|
failure or whether it is a possibly-legitimate access at a
|
|
misaligned address.
|
|
*/
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Crude profiling machinery. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
#ifdef VG_PROFILE_MEMORY
|
|
|
|
#define N_PROF_EVENTS 150
|
|
|
|
static UInt event_ctr[N_PROF_EVENTS];
|
|
|
|
static void init_prof_mem ( void )
|
|
{
|
|
Int i;
|
|
for (i = 0; i < N_PROF_EVENTS; i++)
|
|
event_ctr[i] = 0;
|
|
}
|
|
|
|
void VG_(done_prof_mem) ( void )
|
|
{
|
|
Int i;
|
|
for (i = 0; i < N_PROF_EVENTS; i++) {
|
|
if ((i % 10) == 0)
|
|
VG_(printf)("\n");
|
|
if (event_ctr[i] > 0)
|
|
VG_(printf)( "prof mem event %2d: %d\n", i, event_ctr[i] );
|
|
}
|
|
VG_(printf)("\n");
|
|
}
|
|
|
|
#define PROF_EVENT(ev) \
|
|
do { vg_assert((ev) >= 0 && (ev) < N_PROF_EVENTS); \
|
|
event_ctr[ev]++; \
|
|
} while (False);
|
|
|
|
#else
|
|
|
|
static void init_prof_mem ( void ) { }
|
|
void VG_(done_prof_mem) ( void ) { }
|
|
|
|
#define PROF_EVENT(ev) /* */
|
|
|
|
#endif
|
|
|
|
/* Event index. If just the name of the fn is given, this means the
|
|
number of calls to the fn. Otherwise it is the specified event.
|
|
|
|
10 alloc_secondary_map
|
|
|
|
20 get_abit
|
|
21 get_vbyte
|
|
22 set_abit
|
|
23 set_vbyte
|
|
24 get_abits4_ALIGNED
|
|
25 get_vbytes4_ALIGNED
|
|
|
|
30 set_address_range_perms
|
|
31 set_address_range_perms(lower byte loop)
|
|
32 set_address_range_perms(quadword loop)
|
|
33 set_address_range_perms(upper byte loop)
|
|
|
|
35 make_noaccess
|
|
36 make_writable
|
|
37 make_readable
|
|
|
|
40 copy_address_range_perms
|
|
41 copy_address_range_perms(byte loop)
|
|
42 check_writable
|
|
43 check_writable(byte loop)
|
|
44 check_readable
|
|
45 check_readable(byte loop)
|
|
46 check_readable_asciiz
|
|
47 check_readable_asciiz(byte loop)
|
|
|
|
50 make_aligned_word_NOACCESS
|
|
51 make_aligned_word_WRITABLE
|
|
|
|
60 helperc_LOADV4
|
|
61 helperc_STOREV4
|
|
62 helperc_LOADV2
|
|
63 helperc_STOREV2
|
|
64 helperc_LOADV1
|
|
65 helperc_STOREV1
|
|
|
|
70 rim_rd_V4_SLOWLY
|
|
71 rim_wr_V4_SLOWLY
|
|
72 rim_rd_V2_SLOWLY
|
|
73 rim_wr_V2_SLOWLY
|
|
74 rim_rd_V1_SLOWLY
|
|
75 rim_wr_V1_SLOWLY
|
|
|
|
80 fpu_read
|
|
81 fpu_read aligned 4
|
|
82 fpu_read aligned 8
|
|
83 fpu_read 2
|
|
84 fpu_read 10
|
|
|
|
85 fpu_write
|
|
86 fpu_write aligned 4
|
|
87 fpu_write aligned 8
|
|
88 fpu_write 2
|
|
89 fpu_write 10
|
|
|
|
90 fpu_read_check_SLOWLY
|
|
91 fpu_read_check_SLOWLY(byte loop)
|
|
92 fpu_write_check_SLOWLY
|
|
93 fpu_write_check_SLOWLY(byte loop)
|
|
|
|
100 is_plausible_stack_addr
|
|
101 handle_esp_assignment
|
|
102 handle_esp_assignment(-4)
|
|
103 handle_esp_assignment(+4)
|
|
104 handle_esp_assignment(-12)
|
|
105 handle_esp_assignment(-8)
|
|
106 handle_esp_assignment(+16)
|
|
107 handle_esp_assignment(+12)
|
|
108 handle_esp_assignment(0)
|
|
109 handle_esp_assignment(+8)
|
|
110 handle_esp_assignment(-16)
|
|
111 handle_esp_assignment(+20)
|
|
112 handle_esp_assignment(-20)
|
|
113 handle_esp_assignment(+24)
|
|
114 handle_esp_assignment(-24)
|
|
|
|
120 vg_handle_esp_assignment_SLOWLY
|
|
121 vg_handle_esp_assignment_SLOWLY(normal; move down)
|
|
122 vg_handle_esp_assignment_SLOWLY(normal; move up)
|
|
123 vg_handle_esp_assignment_SLOWLY(normal)
|
|
124 vg_handle_esp_assignment_SLOWLY(>= HUGE_DELTA)
|
|
*/
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Function declarations. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* Set permissions for an address range. Not speed-critical. */
|
|
void VGM_(make_noaccess) ( Addr a, UInt len );
|
|
void VGM_(make_writable) ( Addr a, UInt len );
|
|
void VGM_(make_readable) ( Addr a, UInt len );
|
|
|
|
/* Check permissions for an address range. Not speed-critical. */
|
|
Bool VGM_(check_writable) ( Addr a, UInt len, Addr* bad_addr );
|
|
Bool VGM_(check_readable) ( Addr a, UInt len, Addr* bad_addr );
|
|
Bool VGM_(check_readable_asciiz) ( Addr a, Addr* bad_addr );
|
|
|
|
static UInt vgm_rd_V4_SLOWLY ( Addr a );
|
|
static UInt vgm_rd_V2_SLOWLY ( Addr a );
|
|
static UInt vgm_rd_V1_SLOWLY ( Addr a );
|
|
static void vgm_wr_V4_SLOWLY ( Addr a, UInt vbytes );
|
|
static void vgm_wr_V2_SLOWLY ( Addr a, UInt vbytes );
|
|
static void vgm_wr_V1_SLOWLY ( Addr a, UInt vbytes );
|
|
static void fpu_read_check_SLOWLY ( Addr addr, Int size );
|
|
static void fpu_write_check_SLOWLY ( Addr addr, Int size );
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Data defns. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
typedef
|
|
struct {
|
|
UChar abits[8192];
|
|
UChar vbyte[65536];
|
|
}
|
|
SecMap;
|
|
|
|
/* These two are statically allocated. Should they be non-public? */
|
|
SecMap* VG_(primary_map)[ /*65536*/ 262144 ];
|
|
static SecMap vg_distinguished_secondary_map;
|
|
|
|
#define IS_DISTINGUISHED_SM(smap) \
|
|
((smap) == &vg_distinguished_secondary_map)
|
|
|
|
#define ENSURE_MAPPABLE(addr,caller) \
|
|
do { \
|
|
if (IS_DISTINGUISHED_SM(VG_(primary_map)[(addr) >> 16])) { \
|
|
VG_(primary_map)[(addr) >> 16] = alloc_secondary_map(caller); \
|
|
/* VG_(printf)("new 2map because of %p\n", addr); */ \
|
|
} \
|
|
} while(0)
|
|
|
|
#define BITARR_SET(aaa_p,iii_p) \
|
|
do { \
|
|
UInt iii = (UInt)iii_p; \
|
|
UChar* aaa = (UChar*)aaa_p; \
|
|
aaa[iii >> 3] |= (1 << (iii & 7)); \
|
|
} while (0)
|
|
|
|
#define BITARR_CLEAR(aaa_p,iii_p) \
|
|
do { \
|
|
UInt iii = (UInt)iii_p; \
|
|
UChar* aaa = (UChar*)aaa_p; \
|
|
aaa[iii >> 3] &= ~(1 << (iii & 7)); \
|
|
} while (0)
|
|
|
|
#define BITARR_TEST(aaa_p,iii_p) \
|
|
(0 != (((UChar*)aaa_p)[ ((UInt)iii_p) >> 3 ] \
|
|
& (1 << (((UInt)iii_p) & 7)))) \
|
|
|
|
|
|
#define VGM_BIT_VALID 0
|
|
#define VGM_BIT_INVALID 1
|
|
|
|
#define VGM_NIBBLE_VALID 0
|
|
#define VGM_NIBBLE_INVALID 0xF
|
|
|
|
#define VGM_BYTE_VALID 0
|
|
#define VGM_BYTE_INVALID 0xFF
|
|
|
|
/* Now in vg_include.h.
|
|
#define VGM_WORD_VALID 0
|
|
#define VGM_WORD_INVALID 0xFFFFFFFF
|
|
*/
|
|
|
|
#define VGM_EFLAGS_VALID 0xFFFFFFFE
|
|
#define VGM_EFLAGS_INVALID 0xFFFFFFFF
|
|
|
|
|
|
#define IS_ALIGNED4_ADDR(aaa_p) (0 == (((UInt)(aaa_p)) & 3))
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Basic bitmap management, reading and writing. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* Allocate and initialise a secondary map. */
|
|
|
|
static SecMap* alloc_secondary_map ( __attribute__ ((unused))
|
|
Char* caller )
|
|
{
|
|
SecMap* map;
|
|
UInt i;
|
|
PROF_EVENT(10);
|
|
|
|
/* Mark all bytes as invalid access and invalid value. */
|
|
|
|
/* It just happens that a SecMap occupies exactly 18 pages --
|
|
although this isn't important, so the following assert is
|
|
spurious. */
|
|
vg_assert(0 == (sizeof(SecMap) % VKI_BYTES_PER_PAGE));
|
|
map = VG_(get_memory_from_mmap)( sizeof(SecMap) );
|
|
|
|
for (i = 0; i < 8192; i++)
|
|
map->abits[i] = VGM_BYTE_INVALID; /* Invalid address */
|
|
for (i = 0; i < 65536; i++)
|
|
map->vbyte[i] = VGM_BYTE_INVALID; /* Invalid Value */
|
|
|
|
/* VG_(printf)("ALLOC_2MAP(%s)\n", caller ); */
|
|
return map;
|
|
}
|
|
|
|
|
|
/* Basic reading/writing of the bitmaps, for byte-sized accesses. */
|
|
|
|
static __inline__ UChar get_abit ( Addr a )
|
|
{
|
|
SecMap* sm = VG_(primary_map)[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(20);
|
|
return BITARR_TEST(sm->abits, sm_off)
|
|
? VGM_BIT_INVALID : VGM_BIT_VALID;
|
|
}
|
|
|
|
static __inline__ UChar get_vbyte ( Addr a )
|
|
{
|
|
SecMap* sm = VG_(primary_map)[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(21);
|
|
return sm->vbyte[sm_off];
|
|
}
|
|
|
|
static __inline__ void set_abit ( Addr a, UChar abit )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
PROF_EVENT(22);
|
|
ENSURE_MAPPABLE(a, "set_abit");
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
if (abit)
|
|
BITARR_SET(sm->abits, sm_off);
|
|
else
|
|
BITARR_CLEAR(sm->abits, sm_off);
|
|
}
|
|
|
|
static __inline__ void set_vbyte ( Addr a, UChar vbyte )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
PROF_EVENT(23);
|
|
ENSURE_MAPPABLE(a, "set_vbyte");
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->vbyte[sm_off] = vbyte;
|
|
}
|
|
|
|
|
|
/* Reading/writing of the bitmaps, for aligned word-sized accesses. */
|
|
|
|
static __inline__ UChar get_abits4_ALIGNED ( Addr a )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar abits8;
|
|
PROF_EVENT(24);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vg_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
abits8 = sm->abits[sm_off >> 3];
|
|
abits8 >>= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
abits8 &= 0x0F;
|
|
return abits8;
|
|
}
|
|
|
|
static UInt __inline__ get_vbytes4_ALIGNED ( Addr a )
|
|
{
|
|
SecMap* sm = VG_(primary_map)[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(25);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vg_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
return ((UInt*)(sm->vbyte))[sm_off >> 2];
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Setting permissions over address ranges. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static void set_address_range_perms ( Addr a, UInt len,
|
|
UInt example_a_bit,
|
|
UInt example_v_bit )
|
|
{
|
|
UChar vbyte, abyte8;
|
|
UInt vword4, sm_off;
|
|
SecMap* sm;
|
|
|
|
PROF_EVENT(30);
|
|
|
|
if (len == 0)
|
|
return;
|
|
|
|
if (len > 100 * 1000 * 1000)
|
|
VG_(message)(Vg_UserMsg,
|
|
"Warning: set address range perms: "
|
|
"large range %d, a %d, v %d",
|
|
len, example_a_bit, example_v_bit );
|
|
|
|
VGP_PUSHCC(VgpSARP);
|
|
|
|
/* Requests to change permissions of huge address ranges may
|
|
indicate bugs in our machinery. 30,000,000 is arbitrary, but so
|
|
far all legitimate requests have fallen beneath that size. */
|
|
/* 4 Mar 02: this is just stupid; get rid of it. */
|
|
/* vg_assert(len < 30000000); */
|
|
|
|
/* Check the permissions make sense. */
|
|
vg_assert(example_a_bit == VGM_BIT_VALID
|
|
|| example_a_bit == VGM_BIT_INVALID);
|
|
vg_assert(example_v_bit == VGM_BIT_VALID
|
|
|| example_v_bit == VGM_BIT_INVALID);
|
|
if (example_a_bit == VGM_BIT_INVALID)
|
|
vg_assert(example_v_bit == VGM_BIT_INVALID);
|
|
|
|
/* The validity bits to write. */
|
|
vbyte = example_v_bit==VGM_BIT_VALID
|
|
? VGM_BYTE_VALID : VGM_BYTE_INVALID;
|
|
|
|
/* In order that we can charge through the address space at 8
|
|
bytes/main-loop iteration, make up some perms. */
|
|
abyte8 = (example_a_bit << 7)
|
|
| (example_a_bit << 6)
|
|
| (example_a_bit << 5)
|
|
| (example_a_bit << 4)
|
|
| (example_a_bit << 3)
|
|
| (example_a_bit << 2)
|
|
| (example_a_bit << 1)
|
|
| (example_a_bit << 0);
|
|
vword4 = (vbyte << 24) | (vbyte << 16) | (vbyte << 8) | vbyte;
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
/* Do it ... */
|
|
while (True) {
|
|
PROF_EVENT(31);
|
|
if (len == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
|
|
# else
|
|
/* Slowly do parts preceding 8-byte alignment. */
|
|
while (True) {
|
|
PROF_EVENT(31);
|
|
if (len == 0) break;
|
|
if ((a % 8) == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
|
|
if (len == 0) {
|
|
VGP_POPCC;
|
|
return;
|
|
}
|
|
vg_assert((a % 8) == 0 && len > 0);
|
|
|
|
/* Once aligned, go fast. */
|
|
while (True) {
|
|
PROF_EVENT(32);
|
|
if (len < 8) break;
|
|
ENSURE_MAPPABLE(a, "set_address_range_perms(fast)");
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->abits[sm_off >> 3] = abyte8;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 0] = vword4;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 1] = vword4;
|
|
a += 8;
|
|
len -= 8;
|
|
}
|
|
|
|
if (len == 0) {
|
|
VGP_POPCC;
|
|
return;
|
|
}
|
|
vg_assert((a % 8) == 0 && len > 0 && len < 8);
|
|
|
|
/* Finish the upper fragment. */
|
|
while (True) {
|
|
PROF_EVENT(33);
|
|
if (len == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
# endif
|
|
|
|
/* Check that zero page and highest page have not been written to
|
|
-- this could happen with buggy syscall wrappers. Today
|
|
(2001-04-26) had precisely such a problem with
|
|
__NR_setitimer. */
|
|
vg_assert(VG_(first_and_last_secondaries_look_plausible)());
|
|
VGP_POPCC;
|
|
}
|
|
|
|
|
|
/* Set permissions for address ranges ... */
|
|
|
|
void VGM_(make_noaccess) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(35);
|
|
set_address_range_perms ( a, len, VGM_BIT_INVALID, VGM_BIT_INVALID );
|
|
}
|
|
|
|
void VGM_(make_writable) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(36);
|
|
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_INVALID );
|
|
}
|
|
|
|
void VGM_(make_readable) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(37);
|
|
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_VALID );
|
|
}
|
|
|
|
void VGM_(make_readwritable) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(38);
|
|
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_VALID );
|
|
}
|
|
|
|
/* Block-copy permissions (needed for implementing realloc()). */
|
|
|
|
void VGM_(copy_address_range_perms) ( Addr src, Addr dst, UInt len )
|
|
{
|
|
UInt i;
|
|
PROF_EVENT(40);
|
|
for (i = 0; i < len; i++) {
|
|
UChar abit = get_abit ( src+i );
|
|
UChar vbyte = get_vbyte ( src+i );
|
|
PROF_EVENT(41);
|
|
set_abit ( dst+i, abit );
|
|
set_vbyte ( dst+i, vbyte );
|
|
}
|
|
}
|
|
|
|
|
|
/* Check permissions for address range. If inadequate permissions
|
|
exist, *bad_addr is set to the offending address, so the caller can
|
|
know what it is. */
|
|
|
|
Bool VGM_(check_writable) ( Addr a, UInt len, Addr* bad_addr )
|
|
{
|
|
UInt i;
|
|
UChar abit;
|
|
PROF_EVENT(42);
|
|
for (i = 0; i < len; i++) {
|
|
PROF_EVENT(43);
|
|
abit = get_abit(a);
|
|
if (abit == VGM_BIT_INVALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
a++;
|
|
}
|
|
return True;
|
|
}
|
|
|
|
Bool VGM_(check_readable) ( Addr a, UInt len, Addr* bad_addr )
|
|
{
|
|
UInt i;
|
|
UChar abit;
|
|
UChar vbyte;
|
|
PROF_EVENT(44);
|
|
for (i = 0; i < len; i++) {
|
|
abit = get_abit(a);
|
|
vbyte = get_vbyte(a);
|
|
PROF_EVENT(45);
|
|
if (abit != VGM_BIT_VALID || vbyte != VGM_BYTE_VALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
a++;
|
|
}
|
|
return True;
|
|
}
|
|
|
|
|
|
/* Check a zero-terminated ascii string. Tricky -- don't want to
|
|
examine the actual bytes, to find the end, until we're sure it is
|
|
safe to do so. */
|
|
|
|
Bool VGM_(check_readable_asciiz) ( Addr a, Addr* bad_addr )
|
|
{
|
|
UChar abit;
|
|
UChar vbyte;
|
|
PROF_EVENT(46);
|
|
while (True) {
|
|
PROF_EVENT(47);
|
|
abit = get_abit(a);
|
|
vbyte = get_vbyte(a);
|
|
if (abit != VGM_BIT_VALID || vbyte != VGM_BYTE_VALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
/* Ok, a is safe to read. */
|
|
if (* ((UChar*)a) == 0) return True;
|
|
a++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Setting permissions for aligned words. This supports fast stack
|
|
operations. */
|
|
|
|
static __inline__ void make_aligned_word_NOACCESS ( Addr a )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar mask;
|
|
PROF_EVENT(50);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vg_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
ENSURE_MAPPABLE(a, "make_aligned_word_NOACCESS");
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[sm_off >> 2] = VGM_WORD_INVALID;
|
|
mask = 0x0F;
|
|
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
/* mask now contains 1s where we wish to make address bits
|
|
invalid (1s). */
|
|
sm->abits[sm_off >> 3] |= mask;
|
|
}
|
|
|
|
static __inline__ void make_aligned_word_WRITABLE ( Addr a )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar mask;
|
|
PROF_EVENT(51);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vg_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
ENSURE_MAPPABLE(a, "make_aligned_word_WRITABLE");
|
|
sm = VG_(primary_map)[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[sm_off >> 2] = VGM_WORD_INVALID;
|
|
mask = 0x0F;
|
|
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
/* mask now contains 1s where we wish to make address bits
|
|
invalid (0s). */
|
|
sm->abits[sm_off >> 3] &= ~mask;
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Functions called directly from generated code. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static __inline__ UInt rotateRight16 ( UInt x )
|
|
{
|
|
/* Amazingly, gcc turns this into a single rotate insn. */
|
|
return (x >> 16) | (x << 16);
|
|
}
|
|
|
|
|
|
static __inline__ UInt shiftRight16 ( UInt x )
|
|
{
|
|
return x >> 16;
|
|
}
|
|
|
|
|
|
/* Read/write 1/2/4 sized V bytes, and emit an address error if
|
|
needed. */
|
|
|
|
/* VG_(helperc_{LD,ST}V{1,2,4}) handle the common case fast.
|
|
Under all other circumstances, it defers to the relevant _SLOWLY
|
|
function, which can handle all situations.
|
|
*/
|
|
UInt VG_(helperc_LOADV4) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return vgm_rd_V4_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x3FFFF;
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
UChar abits = sm->abits[a_off];
|
|
abits >>= (a & 4);
|
|
abits &= 15;
|
|
PROF_EVENT(60);
|
|
if (abits == VGM_NIBBLE_VALID) {
|
|
/* Handle common case quickly: a is suitably aligned, is mapped,
|
|
and is addressible. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return ((UInt*)(sm->vbyte))[ v_off >> 2 ];
|
|
} else {
|
|
/* Slow but general case. */
|
|
return vgm_rd_V4_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
void VG_(helperc_STOREV4) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vgm_wr_V4_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x3FFFF;
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
UChar abits = sm->abits[a_off];
|
|
abits >>= (a & 4);
|
|
abits &= 15;
|
|
PROF_EVENT(61);
|
|
if (abits == VGM_NIBBLE_VALID) {
|
|
/* Handle common case quickly: a is suitably aligned, is mapped,
|
|
and is addressible. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = vbytes;
|
|
} else {
|
|
/* Slow but general case. */
|
|
vgm_wr_V4_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
UInt VG_(helperc_LOADV2) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return vgm_rd_V2_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x1FFFF;
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(62);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return 0xFFFF0000
|
|
|
|
|
(UInt)( ((UShort*)(sm->vbyte))[ v_off >> 1 ] );
|
|
} else {
|
|
/* Slow but general case. */
|
|
return vgm_rd_V2_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
void VG_(helperc_STOREV2) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vgm_wr_V2_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x1FFFF;
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(63);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UShort*)(sm->vbyte))[ v_off >> 1 ] = vbytes & 0x0000FFFF;
|
|
} else {
|
|
/* Slow but general case. */
|
|
vgm_wr_V2_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
UInt VG_(helperc_LOADV1) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return vgm_rd_V1_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = shiftRight16(a);
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(64);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return 0xFFFFFF00
|
|
|
|
|
(UInt)( ((UChar*)(sm->vbyte))[ v_off ] );
|
|
} else {
|
|
/* Slow but general case. */
|
|
return vgm_rd_V1_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
void VG_(helperc_STOREV1) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
vgm_wr_V1_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = shiftRight16(a);
|
|
SecMap* sm = VG_(primary_map)[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(65);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UChar*)(sm->vbyte))[ v_off ] = vbytes & 0x000000FF;
|
|
} else {
|
|
/* Slow but general case. */
|
|
vgm_wr_V1_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Fallback functions to handle cases that the above ---*/
|
|
/*--- VG_(helperc_{LD,ST}V{1,2,4}) can't manage. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static UInt vgm_rd_V4_SLOWLY ( Addr a )
|
|
{
|
|
Bool a0ok, a1ok, a2ok, a3ok;
|
|
UInt vb0, vb1, vb2, vb3;
|
|
|
|
PROF_EVENT(70);
|
|
|
|
/* First establish independently the addressibility of the 4 bytes
|
|
involved. */
|
|
a0ok = get_abit(a+0) == VGM_BIT_VALID;
|
|
a1ok = get_abit(a+1) == VGM_BIT_VALID;
|
|
a2ok = get_abit(a+2) == VGM_BIT_VALID;
|
|
a3ok = get_abit(a+3) == VGM_BIT_VALID;
|
|
|
|
/* Also get the validity bytes for the address. */
|
|
vb0 = (UInt)get_vbyte(a+0);
|
|
vb1 = (UInt)get_vbyte(a+1);
|
|
vb2 = (UInt)get_vbyte(a+2);
|
|
vb3 = (UInt)get_vbyte(a+3);
|
|
|
|
/* Now distinguish 3 cases */
|
|
|
|
/* Case 1: the address is completely valid, so:
|
|
- no addressing error
|
|
- return V bytes as read from memory
|
|
*/
|
|
if (a0ok && a1ok && a2ok && a3ok) {
|
|
UInt vw = VGM_WORD_INVALID;
|
|
vw <<= 8; vw |= vb3;
|
|
vw <<= 8; vw |= vb2;
|
|
vw <<= 8; vw |= vb1;
|
|
vw <<= 8; vw |= vb0;
|
|
return vw;
|
|
}
|
|
|
|
/* Case 2: the address is completely invalid.
|
|
- emit addressing error
|
|
- return V word indicating validity.
|
|
This sounds strange, but if we make loads from invalid addresses
|
|
give invalid data, we also risk producing a number of confusing
|
|
undefined-value errors later, which confuses the fact that the
|
|
error arose in the first place from an invalid address.
|
|
*/
|
|
/* VG_(printf)("%p (%d %d %d %d)\n", a, a0ok, a1ok, a2ok, a3ok); */
|
|
if (!VG_(clo_partial_loads_ok)
|
|
|| ((a & 3) != 0)
|
|
|| (!a0ok && !a1ok && !a2ok && !a3ok)) {
|
|
VG_(record_address_error)( a, 4, False );
|
|
return (VGM_BYTE_VALID << 24) | (VGM_BYTE_VALID << 16)
|
|
| (VGM_BYTE_VALID << 8) | VGM_BYTE_VALID;
|
|
}
|
|
|
|
/* Case 3: the address is partially valid.
|
|
- no addressing error
|
|
- returned V word is invalid where the address is invalid,
|
|
and contains V bytes from memory otherwise.
|
|
Case 3 is only allowed if VG_(clo_partial_loads_ok) is True
|
|
(which is the default), and the address is 4-aligned.
|
|
If not, Case 2 will have applied.
|
|
*/
|
|
vg_assert(VG_(clo_partial_loads_ok));
|
|
{
|
|
UInt vw = VGM_WORD_INVALID;
|
|
vw <<= 8; vw |= (a3ok ? vb3 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a2ok ? vb2 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a1ok ? vb1 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a0ok ? vb0 : VGM_BYTE_INVALID);
|
|
return vw;
|
|
}
|
|
}
|
|
|
|
static void vgm_wr_V4_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(71);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+2) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+3) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+1, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+2, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+3, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
VG_(record_address_error)( a, 4, True );
|
|
}
|
|
|
|
static UInt vgm_rd_V2_SLOWLY ( Addr a )
|
|
{
|
|
/* Check the address for validity. */
|
|
UInt vw = VGM_WORD_INVALID;
|
|
Bool aerr = False;
|
|
PROF_EVENT(72);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Fetch the V bytes, remembering to do it little-endian-ly. */
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+1);
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+0);
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr) {
|
|
VG_(record_address_error)( a, 2, False );
|
|
vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
|
|
| (VGM_BYTE_VALID << 8) | (VGM_BYTE_VALID);
|
|
}
|
|
return vw;
|
|
}
|
|
|
|
static void vgm_wr_V2_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(73);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+1, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
VG_(record_address_error)( a, 2, True );
|
|
}
|
|
|
|
static UInt vgm_rd_V1_SLOWLY ( Addr a )
|
|
{
|
|
/* Check the address for validity. */
|
|
UInt vw = VGM_WORD_INVALID;
|
|
Bool aerr = False;
|
|
PROF_EVENT(74);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Fetch the V byte. */
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+0);
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr) {
|
|
VG_(record_address_error)( a, 1, False );
|
|
vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
|
|
| (VGM_BYTE_INVALID << 8) | (VGM_BYTE_VALID);
|
|
}
|
|
return vw;
|
|
}
|
|
|
|
static void vgm_wr_V1_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(75);
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
VG_(record_address_error)( a, 1, True );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Called from generated code, or from the assembly helpers.
|
|
Handlers for value check failures.
|
|
------------------------------------------------------------------ */
|
|
|
|
void VG_(helperc_value_check0_fail) ( void )
|
|
{
|
|
VG_(record_value_error) ( 0 );
|
|
}
|
|
|
|
void VG_(helperc_value_check1_fail) ( void )
|
|
{
|
|
VG_(record_value_error) ( 1 );
|
|
}
|
|
|
|
void VG_(helperc_value_check2_fail) ( void )
|
|
{
|
|
VG_(record_value_error) ( 2 );
|
|
}
|
|
|
|
void VG_(helperc_value_check4_fail) ( void )
|
|
{
|
|
VG_(record_value_error) ( 4 );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
FPU load and store checks, called from generated code.
|
|
------------------------------------------------------------------ */
|
|
|
|
void VGM_(fpu_read_check) ( Addr addr, Int size )
|
|
{
|
|
/* Ensure the read area is both addressible and valid (ie,
|
|
readable). If there's an address error, don't report a value
|
|
error too; but if there isn't an address error, check for a
|
|
value error.
|
|
|
|
Try to be reasonably fast on the common case; wimp out and defer
|
|
to fpu_read_check_SLOWLY for everything else. */
|
|
|
|
SecMap* sm;
|
|
UInt sm_off, v_off, a_off;
|
|
Addr addr4;
|
|
|
|
PROF_EVENT(80);
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
fpu_read_check_SLOWLY ( addr, size );
|
|
# else
|
|
|
|
if (size == 4) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow4;
|
|
PROF_EVENT(81);
|
|
/* Properly aligned. */
|
|
sm = VG_(primary_map)[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow4;
|
|
/* Properly aligned and addressible. */
|
|
v_off = addr & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow4;
|
|
/* Properly aligned, addressible and with valid data. */
|
|
return;
|
|
slow4:
|
|
fpu_read_check_SLOWLY ( addr, 4 );
|
|
return;
|
|
}
|
|
|
|
if (size == 8) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow8;
|
|
PROF_EVENT(82);
|
|
/* Properly aligned. Do it in two halves. */
|
|
addr4 = addr + 4;
|
|
/* First half. */
|
|
sm = VG_(primary_map)[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* First half properly aligned and addressible. */
|
|
v_off = addr & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow8;
|
|
/* Second half. */
|
|
sm = VG_(primary_map)[addr4 >> 16];
|
|
sm_off = addr4 & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* Second half properly aligned and addressible. */
|
|
v_off = addr4 & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow8;
|
|
/* Both halves properly aligned, addressible and with valid
|
|
data. */
|
|
return;
|
|
slow8:
|
|
fpu_read_check_SLOWLY ( addr, 8 );
|
|
return;
|
|
}
|
|
|
|
/* Can't be bothered to huff'n'puff to make these (allegedly) rare
|
|
cases go quickly. */
|
|
if (size == 2) {
|
|
PROF_EVENT(83);
|
|
fpu_read_check_SLOWLY ( addr, 2 );
|
|
return;
|
|
}
|
|
|
|
if (size == 10) {
|
|
PROF_EVENT(84);
|
|
fpu_read_check_SLOWLY ( addr, 10 );
|
|
return;
|
|
}
|
|
|
|
VG_(printf)("size is %d\n", size);
|
|
VG_(panic)("vgm_fpu_read_check: unhandled size");
|
|
# endif
|
|
}
|
|
|
|
|
|
void VGM_(fpu_write_check) ( Addr addr, Int size )
|
|
{
|
|
/* Ensure the written area is addressible, and moan if otherwise.
|
|
If it is addressible, make it valid, otherwise invalid.
|
|
*/
|
|
|
|
SecMap* sm;
|
|
UInt sm_off, v_off, a_off;
|
|
Addr addr4;
|
|
|
|
PROF_EVENT(85);
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
fpu_write_check_SLOWLY ( addr, size );
|
|
# else
|
|
|
|
if (size == 4) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow4;
|
|
PROF_EVENT(86);
|
|
/* Properly aligned. */
|
|
sm = VG_(primary_map)[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow4;
|
|
/* Properly aligned and addressible. Make valid. */
|
|
v_off = addr & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
return;
|
|
slow4:
|
|
fpu_write_check_SLOWLY ( addr, 4 );
|
|
return;
|
|
}
|
|
|
|
if (size == 8) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow8;
|
|
PROF_EVENT(87);
|
|
/* Properly aligned. Do it in two halves. */
|
|
addr4 = addr + 4;
|
|
/* First half. */
|
|
sm = VG_(primary_map)[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* First half properly aligned and addressible. Make valid. */
|
|
v_off = addr & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
/* Second half. */
|
|
sm = VG_(primary_map)[addr4 >> 16];
|
|
sm_off = addr4 & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* Second half properly aligned and addressible. */
|
|
v_off = addr4 & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
/* Properly aligned, addressible and with valid data. */
|
|
return;
|
|
slow8:
|
|
fpu_write_check_SLOWLY ( addr, 8 );
|
|
return;
|
|
}
|
|
|
|
/* Can't be bothered to huff'n'puff to make these (allegedly) rare
|
|
cases go quickly. */
|
|
if (size == 2) {
|
|
PROF_EVENT(88);
|
|
fpu_write_check_SLOWLY ( addr, 2 );
|
|
return;
|
|
}
|
|
|
|
if (size == 10) {
|
|
PROF_EVENT(89);
|
|
fpu_write_check_SLOWLY ( addr, 10 );
|
|
return;
|
|
}
|
|
|
|
VG_(printf)("size is %d\n", size);
|
|
VG_(panic)("vgm_fpu_write_check: unhandled size");
|
|
# endif
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Slow, general cases for FPU load and store checks.
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Generic version. Test for both addr and value errors, but if
|
|
there's an addr error, don't report a value error even if it
|
|
exists. */
|
|
|
|
void fpu_read_check_SLOWLY ( Addr addr, Int size )
|
|
{
|
|
Int i;
|
|
Bool aerr = False;
|
|
Bool verr = False;
|
|
PROF_EVENT(90);
|
|
for (i = 0; i < size; i++) {
|
|
PROF_EVENT(91);
|
|
if (get_abit(addr+i) != VGM_BIT_VALID)
|
|
aerr = True;
|
|
if (get_vbyte(addr+i) != VGM_BYTE_VALID)
|
|
verr = True;
|
|
}
|
|
|
|
if (aerr) {
|
|
VG_(record_address_error)( addr, size, False );
|
|
} else {
|
|
if (verr)
|
|
VG_(record_value_error)( size );
|
|
}
|
|
}
|
|
|
|
|
|
/* Generic version. Test for addr errors. Valid addresses are
|
|
given valid values, and invalid addresses invalid values. */
|
|
|
|
void fpu_write_check_SLOWLY ( Addr addr, Int size )
|
|
{
|
|
Int i;
|
|
Addr a_here;
|
|
Bool a_ok;
|
|
Bool aerr = False;
|
|
PROF_EVENT(92);
|
|
for (i = 0; i < size; i++) {
|
|
PROF_EVENT(93);
|
|
a_here = addr+i;
|
|
a_ok = get_abit(a_here) == VGM_BIT_VALID;
|
|
if (a_ok) {
|
|
set_vbyte(a_here, VGM_BYTE_VALID);
|
|
} else {
|
|
set_vbyte(a_here, VGM_BYTE_INVALID);
|
|
aerr = True;
|
|
}
|
|
}
|
|
if (aerr) {
|
|
VG_(record_address_error)( addr, size, True );
|
|
}
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Tracking permissions around %esp changes. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/*
|
|
The stack
|
|
~~~~~~~~~
|
|
The stack's segment seems to be dynamically extended downwards
|
|
by the kernel as the stack pointer moves down. Initially, a
|
|
1-page (4k) stack is allocated. When %esp moves below that for
|
|
the first time, presumably a page fault occurs. The kernel
|
|
detects that the faulting address is in the range from %esp upwards
|
|
to the current valid stack. It then extends the stack segment
|
|
downwards for enough to cover the faulting address, and resumes
|
|
the process (invisibly). The process is unaware of any of this.
|
|
|
|
That means that Valgrind can't spot when the stack segment is
|
|
being extended. Fortunately, we want to precisely and continuously
|
|
update stack permissions around %esp, so we need to spot all
|
|
writes to %esp anyway.
|
|
|
|
The deal is: when %esp is assigned a lower value, the stack is
|
|
being extended. Create a secondary maps to fill in any holes
|
|
between the old stack ptr and this one, if necessary. Then
|
|
mark all bytes in the area just "uncovered" by this %esp change
|
|
as write-only.
|
|
|
|
When %esp goes back up, mark the area receded over as unreadable
|
|
and unwritable.
|
|
|
|
Just to record the %esp boundary conditions somewhere convenient:
|
|
%esp always points to the lowest live byte in the stack. All
|
|
addresses below %esp are not live; those at and above it are.
|
|
*/
|
|
|
|
/* Does this address look like something in or vaguely near the
|
|
current thread's stack? */
|
|
static
|
|
Bool is_plausible_stack_addr ( ThreadState* tst, Addr aa )
|
|
{
|
|
UInt a = (UInt)aa;
|
|
PROF_EVENT(100);
|
|
if (a <= tst->stack_highest_word &&
|
|
a > tst->stack_highest_word - VG_PLAUSIBLE_STACK_SIZE)
|
|
return True;
|
|
else
|
|
return False;
|
|
}
|
|
|
|
|
|
/* Is this address within some small distance below %ESP? Used only
|
|
for the --workaround-gcc296-bugs kludge. */
|
|
Bool VG_(is_just_below_ESP)( Addr esp, Addr aa )
|
|
{
|
|
if ((UInt)esp > (UInt)aa
|
|
&& ((UInt)esp - (UInt)aa) <= VG_GCC296_BUG_STACK_SLOP)
|
|
return True;
|
|
else
|
|
return False;
|
|
}
|
|
|
|
|
|
/* Kludgey ... how much does %esp have to change before we reckon that
|
|
the application is switching stacks ? */
|
|
#define VG_HUGE_DELTA (VG_PLAUSIBLE_STACK_SIZE / 4)
|
|
|
|
static Addr get_page_base ( Addr a )
|
|
{
|
|
return a & ~(VKI_BYTES_PER_PAGE-1);
|
|
}
|
|
|
|
|
|
static void vg_handle_esp_assignment_SLOWLY ( Addr );
|
|
|
|
void VGM_(handle_esp_assignment) ( Addr new_espA )
|
|
{
|
|
UInt old_esp = VG_(baseBlock)[VGOFF_(m_esp)];
|
|
UInt new_esp = (UInt)new_espA;
|
|
Int delta = ((Int)new_esp) - ((Int)old_esp);
|
|
|
|
PROF_EVENT(101);
|
|
|
|
# ifndef VG_DEBUG_MEMORY
|
|
|
|
if (IS_ALIGNED4_ADDR(old_esp)) {
|
|
|
|
/* Deal with the most common cases fast. These are ordered in
|
|
the sequence most common first. */
|
|
|
|
if (delta == -4) {
|
|
/* Moving down by 4 and properly aligned.. */
|
|
PROF_EVENT(102);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
return;
|
|
}
|
|
|
|
if (delta == 4) {
|
|
/* Moving up by 4 and properly aligned. */
|
|
PROF_EVENT(103);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
return;
|
|
}
|
|
|
|
if (delta == -12) {
|
|
PROF_EVENT(104);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
make_aligned_word_WRITABLE(new_esp+4);
|
|
make_aligned_word_WRITABLE(new_esp+8);
|
|
return;
|
|
}
|
|
|
|
if (delta == -8) {
|
|
PROF_EVENT(105);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
make_aligned_word_WRITABLE(new_esp+4);
|
|
return;
|
|
}
|
|
|
|
if (delta == 16) {
|
|
PROF_EVENT(106);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
make_aligned_word_NOACCESS(old_esp+4);
|
|
make_aligned_word_NOACCESS(old_esp+8);
|
|
make_aligned_word_NOACCESS(old_esp+12);
|
|
return;
|
|
}
|
|
|
|
if (delta == 12) {
|
|
PROF_EVENT(107);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
make_aligned_word_NOACCESS(old_esp+4);
|
|
make_aligned_word_NOACCESS(old_esp+8);
|
|
return;
|
|
}
|
|
|
|
if (delta == 0) {
|
|
PROF_EVENT(108);
|
|
return;
|
|
}
|
|
|
|
if (delta == 8) {
|
|
PROF_EVENT(109);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
make_aligned_word_NOACCESS(old_esp+4);
|
|
return;
|
|
}
|
|
|
|
if (delta == -16) {
|
|
PROF_EVENT(110);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
make_aligned_word_WRITABLE(new_esp+4);
|
|
make_aligned_word_WRITABLE(new_esp+8);
|
|
make_aligned_word_WRITABLE(new_esp+12);
|
|
return;
|
|
}
|
|
|
|
if (delta == 20) {
|
|
PROF_EVENT(111);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
make_aligned_word_NOACCESS(old_esp+4);
|
|
make_aligned_word_NOACCESS(old_esp+8);
|
|
make_aligned_word_NOACCESS(old_esp+12);
|
|
make_aligned_word_NOACCESS(old_esp+16);
|
|
return;
|
|
}
|
|
|
|
if (delta == -20) {
|
|
PROF_EVENT(112);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
make_aligned_word_WRITABLE(new_esp+4);
|
|
make_aligned_word_WRITABLE(new_esp+8);
|
|
make_aligned_word_WRITABLE(new_esp+12);
|
|
make_aligned_word_WRITABLE(new_esp+16);
|
|
return;
|
|
}
|
|
|
|
if (delta == 24) {
|
|
PROF_EVENT(113);
|
|
make_aligned_word_NOACCESS(old_esp);
|
|
make_aligned_word_NOACCESS(old_esp+4);
|
|
make_aligned_word_NOACCESS(old_esp+8);
|
|
make_aligned_word_NOACCESS(old_esp+12);
|
|
make_aligned_word_NOACCESS(old_esp+16);
|
|
make_aligned_word_NOACCESS(old_esp+20);
|
|
return;
|
|
}
|
|
|
|
if (delta == -24) {
|
|
PROF_EVENT(114);
|
|
make_aligned_word_WRITABLE(new_esp);
|
|
make_aligned_word_WRITABLE(new_esp+4);
|
|
make_aligned_word_WRITABLE(new_esp+8);
|
|
make_aligned_word_WRITABLE(new_esp+12);
|
|
make_aligned_word_WRITABLE(new_esp+16);
|
|
make_aligned_word_WRITABLE(new_esp+20);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
# endif
|
|
|
|
/* The above special cases handle 90% to 95% of all the stack
|
|
adjustments. The rest we give to the slow-but-general
|
|
mechanism. */
|
|
vg_handle_esp_assignment_SLOWLY ( new_espA );
|
|
}
|
|
|
|
|
|
static void vg_handle_esp_assignment_SLOWLY ( Addr new_espA )
|
|
{
|
|
UInt old_esp = VG_(baseBlock)[VGOFF_(m_esp)];
|
|
UInt new_esp = (UInt)new_espA;
|
|
Int delta = ((Int)new_esp) - ((Int)old_esp);
|
|
// VG_(printf)("%d ", delta);
|
|
PROF_EVENT(120);
|
|
if (-(VG_HUGE_DELTA) < delta && delta < VG_HUGE_DELTA) {
|
|
/* "Ordinary" stack change. */
|
|
if (new_esp < old_esp) {
|
|
/* Moving down; the stack is growing. */
|
|
PROF_EVENT(121);
|
|
VGM_(make_writable) ( new_esp, old_esp - new_esp );
|
|
return;
|
|
}
|
|
if (new_esp > old_esp) {
|
|
/* Moving up; the stack is shrinking. */
|
|
PROF_EVENT(122);
|
|
VGM_(make_noaccess) ( old_esp, new_esp - old_esp );
|
|
return;
|
|
}
|
|
PROF_EVENT(123);
|
|
return; /* when old_esp == new_esp */
|
|
}
|
|
|
|
/* %esp has changed by more than HUGE_DELTA. We take this to mean
|
|
that the application is switching to a new stack, for whatever
|
|
reason, and we attempt to initialise the permissions around the
|
|
new stack in some plausible way. All pretty kludgey; needed to
|
|
make netscape-4.07 run without generating thousands of error
|
|
contexts.
|
|
|
|
If we appear to be switching back to the main stack, don't mess
|
|
with the permissions in the area at and above the stack ptr.
|
|
Otherwise, we're switching to an alternative stack; make the
|
|
area above %esp readable -- this doesn't seem right -- the right
|
|
thing to do would be to make it writable -- but is needed to
|
|
avoid huge numbers of errs in netscape. To be investigated. */
|
|
|
|
{ Addr invalid_down_to = get_page_base(new_esp)
|
|
- 0 * VKI_BYTES_PER_PAGE;
|
|
Addr valid_up_to = get_page_base(new_esp) + VKI_BYTES_PER_PAGE
|
|
+ 0 * VKI_BYTES_PER_PAGE;
|
|
ThreadState* tst = VG_(get_current_thread_state)();
|
|
PROF_EVENT(124);
|
|
if (VG_(clo_verbosity) > 1)
|
|
VG_(message)(Vg_UserMsg, "Warning: client switching stacks? "
|
|
"%%esp: %p --> %p",
|
|
old_esp, new_esp);
|
|
/* VG_(printf)("na %p, %%esp %p, wr %p\n",
|
|
invalid_down_to, new_esp, valid_up_to ); */
|
|
VGM_(make_noaccess) ( invalid_down_to, new_esp - invalid_down_to );
|
|
if (!is_plausible_stack_addr(tst, new_esp)) {
|
|
VGM_(make_readable) ( new_esp, valid_up_to - new_esp );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*--------------------------------------------------------------*/
|
|
/*--- Initialise the memory audit system on program startup. ---*/
|
|
/*--------------------------------------------------------------*/
|
|
|
|
/* Handle one entry derived from /proc/self/maps. */
|
|
|
|
static
|
|
void init_memory_audit_callback (
|
|
Addr start, UInt size,
|
|
Char rr, Char ww, Char xx,
|
|
UInt foffset, UChar* filename )
|
|
{
|
|
UChar example_a_bit;
|
|
UChar example_v_bit;
|
|
UInt r_esp;
|
|
Bool is_stack_segment;
|
|
|
|
/* Sanity check ... if this is the executable's text segment,
|
|
ensure it is loaded where we think it ought to be. Any file
|
|
name which doesn't contain ".so" is assumed to be the
|
|
executable. */
|
|
if (filename != NULL
|
|
&& xx == 'x'
|
|
&& VG_(strstr(filename, ".so")) == NULL
|
|
) {
|
|
/* We assume this is the executable. */
|
|
if (start != VG_ASSUMED_EXE_BASE) {
|
|
VG_(message)(Vg_UserMsg,
|
|
"FATAL: executable base addr not as assumed.");
|
|
VG_(message)(Vg_UserMsg, "name %s, actual %p, assumed %p.",
|
|
filename, start, VG_ASSUMED_EXE_BASE);
|
|
VG_(message)(Vg_UserMsg,
|
|
"One reason this could happen is that you have a shared object");
|
|
VG_(message)(Vg_UserMsg,
|
|
" whose name doesn't contain the characters \".so\", so Valgrind ");
|
|
VG_(message)(Vg_UserMsg,
|
|
"naively assumes it is the executable. ");
|
|
VG_(message)(Vg_UserMsg,
|
|
"In that case, rename it appropriately.");
|
|
VG_(panic)("VG_ASSUMED_EXE_BASE doesn't match reality");
|
|
}
|
|
}
|
|
|
|
if (0)
|
|
VG_(message)(Vg_DebugMsg,
|
|
"initial map %8x-%8x %c%c%c? %8x (%d) (%s)",
|
|
start,start+size,rr,ww,xx,foffset,
|
|
size, filename?filename:(UChar*)"NULL");
|
|
|
|
r_esp = VG_(baseBlock)[VGOFF_(m_esp)];
|
|
is_stack_segment = start <= r_esp && r_esp < start+size;
|
|
|
|
/* Figure out the segment's permissions.
|
|
|
|
All segments are addressible -- since a process can read its
|
|
own text segment.
|
|
|
|
A read-but-not-write segment presumably contains initialised
|
|
data, so is all valid. Read-write segments presumably contains
|
|
uninitialised data, so is all invalid. */
|
|
|
|
/* ToDo: make this less bogus. */
|
|
if (rr != 'r' && xx != 'x' && ww != 'w') {
|
|
/* Very bogus; this path never gets taken. */
|
|
/* A no, V no */
|
|
example_a_bit = VGM_BIT_INVALID;
|
|
example_v_bit = VGM_BIT_INVALID;
|
|
} else {
|
|
/* A yes, V yes */
|
|
example_a_bit = VGM_BIT_VALID;
|
|
example_v_bit = VGM_BIT_VALID;
|
|
/* Causes a lot of errs for unknown reasons.
|
|
if (filename is valgrind.so
|
|
[careful about end conditions on filename]) {
|
|
example_a_bit = VGM_BIT_INVALID;
|
|
example_v_bit = VGM_BIT_INVALID;
|
|
}
|
|
*/
|
|
}
|
|
|
|
set_address_range_perms ( start, size,
|
|
example_a_bit, example_v_bit );
|
|
|
|
if (is_stack_segment) {
|
|
/* This is the stack segment. Mark all below %esp as
|
|
noaccess. */
|
|
if (0)
|
|
VG_(message)(Vg_DebugMsg,
|
|
"invalidating stack area: %x .. %x",
|
|
start,r_esp);
|
|
VGM_(make_noaccess)( start, r_esp-start );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* ONLY HERE for sbrk() */
|
|
#include <unistd.h>
|
|
|
|
/* Initialise the memory audit system. */
|
|
void VGM_(init_memory_audit) ( void )
|
|
{
|
|
Int i;
|
|
|
|
init_prof_mem();
|
|
|
|
for (i = 0; i < 8192; i++)
|
|
vg_distinguished_secondary_map.abits[i]
|
|
= VGM_BYTE_INVALID; /* Invalid address */
|
|
for (i = 0; i < 65536; i++)
|
|
vg_distinguished_secondary_map.vbyte[i]
|
|
= VGM_BYTE_INVALID; /* Invalid Value */
|
|
|
|
/* These entries gradually get overwritten as the used address
|
|
space expands. */
|
|
for (i = 0; i < 65536; i++)
|
|
VG_(primary_map)[i] = &vg_distinguished_secondary_map;
|
|
/* These ones should never change; it's a bug in Valgrind if they
|
|
do. */
|
|
for (i = 65536; i < 262144; i++)
|
|
VG_(primary_map)[i] = &vg_distinguished_secondary_map;
|
|
|
|
/* Read the initial memory mapping from the /proc filesystem, and
|
|
set up our own maps accordingly. */
|
|
VG_(read_procselfmaps) ( init_memory_audit_callback );
|
|
|
|
/* Last but not least, set up the shadow regs with reasonable (sic)
|
|
values. All regs are claimed to have valid values.
|
|
*/
|
|
VG_(baseBlock)[VGOFF_(sh_esp)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_ebp)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_eax)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_ecx)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_edx)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_ebx)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_esi)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_edi)] = VGM_WORD_VALID;
|
|
VG_(baseBlock)[VGOFF_(sh_eflags)] = VGM_EFLAGS_VALID;
|
|
|
|
/* Record the end of the data segment, so that vg_syscall_mem.c
|
|
can make sense of calls to brk().
|
|
*/
|
|
VGM_(curr_dataseg_end) = (Addr)sbrk(0);
|
|
if (VGM_(curr_dataseg_end) == (Addr)(-1))
|
|
VG_(panic)("vgm_init_memory_audit: can't determine data-seg end");
|
|
|
|
if (0)
|
|
VG_(printf)("DS END is %p\n", (void*)VGM_(curr_dataseg_end));
|
|
|
|
/* Read the list of errors to suppress. This should be found in
|
|
the file specified by vg_clo_suppressions. */
|
|
VG_(load_suppressions)();
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Low-level address-space scanning, for the leak ---*/
|
|
/*--- detector. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static
|
|
jmp_buf memscan_jmpbuf;
|
|
|
|
static
|
|
void vg_scan_all_valid_memory_sighandler ( Int sigNo )
|
|
{
|
|
__builtin_longjmp(memscan_jmpbuf, 1);
|
|
}
|
|
|
|
UInt VG_(scan_all_valid_memory) ( void (*notify_word)( Addr, UInt ) )
|
|
{
|
|
/* All volatile, because some gccs seem paranoid about longjmp(). */
|
|
volatile UInt res, numPages, page, vbytes, primaryMapNo, nWordsNotified;
|
|
volatile Addr pageBase, addr;
|
|
volatile SecMap* sm;
|
|
volatile UChar abits;
|
|
volatile UInt page_first_word;
|
|
|
|
vki_ksigaction sigbus_saved;
|
|
vki_ksigaction sigbus_new;
|
|
vki_ksigaction sigsegv_saved;
|
|
vki_ksigaction sigsegv_new;
|
|
vki_ksigset_t blockmask_saved;
|
|
vki_ksigset_t unblockmask_new;
|
|
|
|
/* Temporarily install a new sigsegv and sigbus handler, and make
|
|
sure SIGBUS, SIGSEGV and SIGTERM are unblocked. (Perhaps the
|
|
first two can never be blocked anyway?) */
|
|
|
|
sigbus_new.ksa_handler = vg_scan_all_valid_memory_sighandler;
|
|
sigbus_new.ksa_flags = VKI_SA_ONSTACK | VKI_SA_RESTART;
|
|
sigbus_new.ksa_restorer = NULL;
|
|
res = VG_(ksigemptyset)( &sigbus_new.ksa_mask );
|
|
vg_assert(res == 0);
|
|
|
|
sigsegv_new.ksa_handler = vg_scan_all_valid_memory_sighandler;
|
|
sigsegv_new.ksa_flags = VKI_SA_ONSTACK | VKI_SA_RESTART;
|
|
sigsegv_new.ksa_restorer = NULL;
|
|
res = VG_(ksigemptyset)( &sigsegv_new.ksa_mask );
|
|
vg_assert(res == 0+0);
|
|
|
|
res = VG_(ksigemptyset)( &unblockmask_new );
|
|
res |= VG_(ksigaddset)( &unblockmask_new, VKI_SIGBUS );
|
|
res |= VG_(ksigaddset)( &unblockmask_new, VKI_SIGSEGV );
|
|
res |= VG_(ksigaddset)( &unblockmask_new, VKI_SIGTERM );
|
|
vg_assert(res == 0+0+0);
|
|
|
|
res = VG_(ksigaction)( VKI_SIGBUS, &sigbus_new, &sigbus_saved );
|
|
vg_assert(res == 0+0+0+0);
|
|
|
|
res = VG_(ksigaction)( VKI_SIGSEGV, &sigsegv_new, &sigsegv_saved );
|
|
vg_assert(res == 0+0+0+0+0);
|
|
|
|
res = VG_(ksigprocmask)( VKI_SIG_UNBLOCK, &unblockmask_new, &blockmask_saved );
|
|
vg_assert(res == 0+0+0+0+0+0);
|
|
|
|
/* The signal handlers are installed. Actually do the memory scan. */
|
|
numPages = 1 << (32-VKI_BYTES_PER_PAGE_BITS);
|
|
vg_assert(numPages == 1048576);
|
|
vg_assert(4096 == (1 << VKI_BYTES_PER_PAGE_BITS));
|
|
|
|
nWordsNotified = 0;
|
|
|
|
for (page = 0; page < numPages; page++) {
|
|
pageBase = page << VKI_BYTES_PER_PAGE_BITS;
|
|
primaryMapNo = pageBase >> 16;
|
|
sm = VG_(primary_map)[primaryMapNo];
|
|
if (IS_DISTINGUISHED_SM(sm)) continue;
|
|
if (__builtin_setjmp(memscan_jmpbuf) == 0) {
|
|
/* try this ... */
|
|
page_first_word = * (volatile UInt*)pageBase;
|
|
/* we get here if we didn't get a fault */
|
|
/* Scan the page */
|
|
for (addr = pageBase; addr < pageBase+VKI_BYTES_PER_PAGE; addr += 4) {
|
|
abits = get_abits4_ALIGNED(addr);
|
|
vbytes = get_vbytes4_ALIGNED(addr);
|
|
if (abits == VGM_NIBBLE_VALID
|
|
&& vbytes == VGM_WORD_VALID) {
|
|
nWordsNotified++;
|
|
notify_word ( addr, *(UInt*)addr );
|
|
}
|
|
}
|
|
} else {
|
|
/* We get here if reading the first word of the page caused a
|
|
fault, which in turn caused the signal handler to longjmp.
|
|
Ignore this page. */
|
|
if (0)
|
|
VG_(printf)(
|
|
"vg_scan_all_valid_memory_sighandler: ignoring page at %p\n",
|
|
(void*)pageBase
|
|
);
|
|
}
|
|
}
|
|
|
|
/* Restore signal state to whatever it was before. */
|
|
res = VG_(ksigaction)( VKI_SIGBUS, &sigbus_saved, NULL );
|
|
vg_assert(res == 0 +0);
|
|
|
|
res = VG_(ksigaction)( VKI_SIGSEGV, &sigsegv_saved, NULL );
|
|
vg_assert(res == 0 +0 +0);
|
|
|
|
res = VG_(ksigprocmask)( VKI_SIG_SETMASK, &blockmask_saved, NULL );
|
|
vg_assert(res == 0 +0 +0 +0);
|
|
|
|
return nWordsNotified;
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Detecting leaked (unreachable) malloc'd blocks. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* A block is either
|
|
-- Proper-ly reached; a pointer to its start has been found
|
|
-- Interior-ly reached; only an interior pointer to it has been found
|
|
-- Unreached; so far, no pointers to any part of it have been found.
|
|
*/
|
|
typedef
|
|
enum { Unreached, Interior, Proper }
|
|
Reachedness;
|
|
|
|
/* A block record, used for generating err msgs. */
|
|
typedef
|
|
struct _LossRecord {
|
|
struct _LossRecord* next;
|
|
/* Where these lost blocks were allocated. */
|
|
ExeContext* allocated_at;
|
|
/* Their reachability. */
|
|
Reachedness loss_mode;
|
|
/* Number of blocks and total # bytes involved. */
|
|
UInt total_bytes;
|
|
UInt num_blocks;
|
|
}
|
|
LossRecord;
|
|
|
|
|
|
/* Find the i such that ptr points at or inside the block described by
|
|
shadows[i]. Return -1 if none found. This assumes that shadows[]
|
|
has been sorted on the ->data field. */
|
|
|
|
#ifdef VG_DEBUG_LEAKCHECK
|
|
/* Used to sanity-check the fast binary-search mechanism. */
|
|
static Int find_shadow_for_OLD ( Addr ptr,
|
|
ShadowChunk** shadows,
|
|
Int n_shadows )
|
|
|
|
{
|
|
Int i;
|
|
Addr a_lo, a_hi;
|
|
PROF_EVENT(70);
|
|
for (i = 0; i < n_shadows; i++) {
|
|
PROF_EVENT(71);
|
|
a_lo = shadows[i]->data;
|
|
a_hi = ((Addr)shadows[i]->data) + shadows[i]->size - 1;
|
|
if (a_lo <= ptr && ptr <= a_hi)
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
|
|
static Int find_shadow_for ( Addr ptr,
|
|
ShadowChunk** shadows,
|
|
Int n_shadows )
|
|
{
|
|
Addr a_mid_lo, a_mid_hi;
|
|
Int lo, mid, hi, retVal;
|
|
PROF_EVENT(70);
|
|
/* VG_(printf)("find shadow for %p = ", ptr); */
|
|
retVal = -1;
|
|
lo = 0;
|
|
hi = n_shadows-1;
|
|
while (True) {
|
|
PROF_EVENT(71);
|
|
|
|
/* invariant: current unsearched space is from lo to hi,
|
|
inclusive. */
|
|
if (lo > hi) break; /* not found */
|
|
|
|
mid = (lo + hi) / 2;
|
|
a_mid_lo = shadows[mid]->data;
|
|
a_mid_hi = ((Addr)shadows[mid]->data) + shadows[mid]->size - 1;
|
|
|
|
if (ptr < a_mid_lo) {
|
|
hi = mid-1;
|
|
continue;
|
|
}
|
|
if (ptr > a_mid_hi) {
|
|
lo = mid+1;
|
|
continue;
|
|
}
|
|
vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi);
|
|
retVal = mid;
|
|
break;
|
|
}
|
|
|
|
# ifdef VG_DEBUG_LEAKCHECK
|
|
vg_assert(retVal == find_shadow_for_OLD ( ptr, shadows, n_shadows ));
|
|
# endif
|
|
/* VG_(printf)("%d\n", retVal); */
|
|
return retVal;
|
|
}
|
|
|
|
|
|
|
|
static void sort_malloc_shadows ( ShadowChunk** shadows, UInt n_shadows )
|
|
{
|
|
Int incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
|
|
9841, 29524, 88573, 265720,
|
|
797161, 2391484 };
|
|
Int lo = 0;
|
|
Int hi = n_shadows-1;
|
|
Int i, j, h, bigN, hp;
|
|
ShadowChunk* v;
|
|
|
|
PROF_EVENT(72);
|
|
bigN = hi - lo + 1; if (bigN < 2) return;
|
|
hp = 0; while (incs[hp] < bigN) hp++; hp--;
|
|
|
|
for (; hp >= 0; hp--) {
|
|
PROF_EVENT(73);
|
|
h = incs[hp];
|
|
i = lo + h;
|
|
while (1) {
|
|
PROF_EVENT(74);
|
|
if (i > hi) break;
|
|
v = shadows[i];
|
|
j = i;
|
|
while (shadows[j-h]->data > v->data) {
|
|
PROF_EVENT(75);
|
|
shadows[j] = shadows[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
shadows[j] = v;
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Globals, for the callback used by VG_(detect_memory_leaks). */
|
|
|
|
static ShadowChunk** vglc_shadows;
|
|
static Int vglc_n_shadows;
|
|
static Reachedness* vglc_reachedness;
|
|
static Addr vglc_min_mallocd_addr;
|
|
static Addr vglc_max_mallocd_addr;
|
|
|
|
static
|
|
void vg_detect_memory_leaks_notify_addr ( Addr a, UInt word_at_a )
|
|
{
|
|
Int sh_no;
|
|
Addr ptr = (Addr)word_at_a;
|
|
if (ptr >= vglc_min_mallocd_addr && ptr <= vglc_max_mallocd_addr) {
|
|
/* Might be legitimate; we'll have to investigate further. */
|
|
sh_no = find_shadow_for ( ptr, vglc_shadows, vglc_n_shadows );
|
|
if (sh_no != -1) {
|
|
/* Found a block at/into which ptr points. */
|
|
vg_assert(sh_no >= 0 && sh_no < vglc_n_shadows);
|
|
vg_assert(ptr < vglc_shadows[sh_no]->data
|
|
+ vglc_shadows[sh_no]->size);
|
|
/* Decide whether Proper-ly or Interior-ly reached. */
|
|
if (ptr == vglc_shadows[sh_no]->data) {
|
|
vglc_reachedness[sh_no] = Proper;
|
|
} else {
|
|
if (vglc_reachedness[sh_no] == Unreached)
|
|
vglc_reachedness[sh_no] = Interior;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void VG_(detect_memory_leaks) ( void )
|
|
{
|
|
Int i;
|
|
Int blocks_leaked, bytes_leaked;
|
|
Int blocks_dubious, bytes_dubious;
|
|
Int blocks_reachable, bytes_reachable;
|
|
Int n_lossrecords;
|
|
UInt bytes_notified;
|
|
|
|
LossRecord* errlist;
|
|
LossRecord* p;
|
|
|
|
Bool (*ec_comparer_fn) ( ExeContext*, ExeContext* );
|
|
PROF_EVENT(76);
|
|
vg_assert(VG_(clo_instrument));
|
|
|
|
/* Decide how closely we want to match ExeContexts in leak
|
|
records. */
|
|
switch (VG_(clo_leak_resolution)) {
|
|
case 2:
|
|
ec_comparer_fn = VG_(eq_ExeContext_top2);
|
|
break;
|
|
case 4:
|
|
ec_comparer_fn = VG_(eq_ExeContext_top4);
|
|
break;
|
|
case VG_DEEPEST_BACKTRACE:
|
|
ec_comparer_fn = VG_(eq_ExeContext_all);
|
|
break;
|
|
default:
|
|
VG_(panic)("VG_(detect_memory_leaks): "
|
|
"bad VG_(clo_leak_resolution)");
|
|
break;
|
|
}
|
|
|
|
/* vg_get_malloc_shadows allocates storage for shadows */
|
|
vglc_shadows = VG_(get_malloc_shadows)( &vglc_n_shadows );
|
|
if (vglc_n_shadows == 0) {
|
|
vg_assert(vglc_shadows == NULL);
|
|
VG_(message)(Vg_UserMsg,
|
|
"No malloc'd blocks -- no leaks are possible.\n");
|
|
return;
|
|
}
|
|
|
|
VG_(message)(Vg_UserMsg,
|
|
"searching for pointers to %d not-freed blocks.",
|
|
vglc_n_shadows );
|
|
sort_malloc_shadows ( vglc_shadows, vglc_n_shadows );
|
|
|
|
/* Sanity check; assert that the blocks are now in order and that
|
|
they don't overlap. */
|
|
for (i = 0; i < vglc_n_shadows-1; i++) {
|
|
vg_assert( ((Addr)vglc_shadows[i]->data)
|
|
< ((Addr)vglc_shadows[i+1]->data) );
|
|
vg_assert( ((Addr)vglc_shadows[i]->data) + vglc_shadows[i]->size
|
|
< ((Addr)vglc_shadows[i+1]->data) );
|
|
}
|
|
|
|
vglc_min_mallocd_addr = ((Addr)vglc_shadows[0]->data);
|
|
vglc_max_mallocd_addr = ((Addr)vglc_shadows[vglc_n_shadows-1]->data)
|
|
+ vglc_shadows[vglc_n_shadows-1]->size - 1;
|
|
|
|
vglc_reachedness
|
|
= VG_(malloc)( VG_AR_PRIVATE, vglc_n_shadows * sizeof(Reachedness) );
|
|
for (i = 0; i < vglc_n_shadows; i++)
|
|
vglc_reachedness[i] = Unreached;
|
|
|
|
/* Do the scan of memory. */
|
|
bytes_notified
|
|
= VG_(scan_all_valid_memory)( &vg_detect_memory_leaks_notify_addr )
|
|
* VKI_BYTES_PER_WORD;
|
|
|
|
VG_(message)(Vg_UserMsg, "checked %d bytes.", bytes_notified);
|
|
|
|
blocks_leaked = bytes_leaked = 0;
|
|
blocks_dubious = bytes_dubious = 0;
|
|
blocks_reachable = bytes_reachable = 0;
|
|
|
|
for (i = 0; i < vglc_n_shadows; i++) {
|
|
if (vglc_reachedness[i] == Unreached) {
|
|
blocks_leaked++;
|
|
bytes_leaked += vglc_shadows[i]->size;
|
|
}
|
|
else if (vglc_reachedness[i] == Interior) {
|
|
blocks_dubious++;
|
|
bytes_dubious += vglc_shadows[i]->size;
|
|
}
|
|
else if (vglc_reachedness[i] == Proper) {
|
|
blocks_reachable++;
|
|
bytes_reachable += vglc_shadows[i]->size;
|
|
}
|
|
}
|
|
|
|
VG_(message)(Vg_UserMsg, "");
|
|
VG_(message)(Vg_UserMsg, "definitely lost: %d bytes in %d blocks.",
|
|
bytes_leaked, blocks_leaked );
|
|
VG_(message)(Vg_UserMsg, "possibly lost: %d bytes in %d blocks.",
|
|
bytes_dubious, blocks_dubious );
|
|
VG_(message)(Vg_UserMsg, "still reachable: %d bytes in %d blocks.",
|
|
bytes_reachable, blocks_reachable );
|
|
|
|
|
|
/* Common up the lost blocks so we can print sensible error
|
|
messages. */
|
|
|
|
n_lossrecords = 0;
|
|
errlist = NULL;
|
|
for (i = 0; i < vglc_n_shadows; i++) {
|
|
for (p = errlist; p != NULL; p = p->next) {
|
|
if (p->loss_mode == vglc_reachedness[i]
|
|
&& ec_comparer_fn (
|
|
p->allocated_at,
|
|
vglc_shadows[i]->where) ) {
|
|
break;
|
|
}
|
|
}
|
|
if (p != NULL) {
|
|
p->num_blocks ++;
|
|
p->total_bytes += vglc_shadows[i]->size;
|
|
} else {
|
|
n_lossrecords ++;
|
|
p = VG_(malloc)(VG_AR_PRIVATE, sizeof(LossRecord));
|
|
p->loss_mode = vglc_reachedness[i];
|
|
p->allocated_at = vglc_shadows[i]->where;
|
|
p->total_bytes = vglc_shadows[i]->size;
|
|
p->num_blocks = 1;
|
|
p->next = errlist;
|
|
errlist = p;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < n_lossrecords; i++) {
|
|
LossRecord* p_min = NULL;
|
|
UInt n_min = 0xFFFFFFFF;
|
|
for (p = errlist; p != NULL; p = p->next) {
|
|
if (p->num_blocks > 0 && p->total_bytes < n_min) {
|
|
n_min = p->total_bytes;
|
|
p_min = p;
|
|
}
|
|
}
|
|
vg_assert(p_min != NULL);
|
|
|
|
if ( (!VG_(clo_show_reachable)) && p_min->loss_mode == Proper) {
|
|
p_min->num_blocks = 0;
|
|
continue;
|
|
}
|
|
|
|
VG_(message)(Vg_UserMsg, "");
|
|
VG_(message)(
|
|
Vg_UserMsg,
|
|
"%d bytes in %d blocks are %s in loss record %d of %d",
|
|
p_min->total_bytes, p_min->num_blocks,
|
|
p_min->loss_mode==Unreached ? "definitely lost" :
|
|
(p_min->loss_mode==Interior ? "possibly lost"
|
|
: "still reachable"),
|
|
i+1, n_lossrecords
|
|
);
|
|
VG_(pp_ExeContext)(p_min->allocated_at);
|
|
p_min->num_blocks = 0;
|
|
}
|
|
|
|
VG_(message)(Vg_UserMsg, "");
|
|
VG_(message)(Vg_UserMsg, "LEAK SUMMARY:");
|
|
VG_(message)(Vg_UserMsg, " possibly lost: %d bytes in %d blocks.",
|
|
bytes_dubious, blocks_dubious );
|
|
VG_(message)(Vg_UserMsg, " definitely lost: %d bytes in %d blocks.",
|
|
bytes_leaked, blocks_leaked );
|
|
VG_(message)(Vg_UserMsg, " still reachable: %d bytes in %d blocks.",
|
|
bytes_reachable, blocks_reachable );
|
|
if (!VG_(clo_show_reachable)) {
|
|
VG_(message)(Vg_UserMsg,
|
|
"Reachable blocks (those to which a pointer was found) are not shown.");
|
|
VG_(message)(Vg_UserMsg,
|
|
"To see them, rerun with: --show-reachable=yes");
|
|
}
|
|
VG_(message)(Vg_UserMsg, "");
|
|
|
|
VG_(free) ( VG_AR_PRIVATE, vglc_shadows );
|
|
VG_(free) ( VG_AR_PRIVATE, vglc_reachedness );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Sanity check machinery (permanently engaged).
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Check that nobody has spuriously claimed that the first or last 16
|
|
pages (64 KB) of address space have become accessible. Failure of
|
|
the following do not per se indicate an internal consistency
|
|
problem, but they are so likely to that we really want to know
|
|
about it if so. */
|
|
|
|
Bool VG_(first_and_last_secondaries_look_plausible) ( void )
|
|
{
|
|
if (IS_DISTINGUISHED_SM(VG_(primary_map)[0])
|
|
&& IS_DISTINGUISHED_SM(VG_(primary_map)[65535])) {
|
|
return True;
|
|
} else {
|
|
return False;
|
|
}
|
|
}
|
|
|
|
|
|
/* A fast sanity check -- suitable for calling circa once per
|
|
millisecond. */
|
|
|
|
void VG_(do_sanity_checks) ( Bool force_expensive )
|
|
{
|
|
Int i;
|
|
Bool do_expensive_checks;
|
|
|
|
if (VG_(sanity_level) < 1) return;
|
|
|
|
/* --- First do all the tests that we can do quickly. ---*/
|
|
|
|
VG_(sanity_fast_count)++;
|
|
|
|
/* Check that we haven't overrun our private stack. */
|
|
for (i = 0; i < 10; i++) {
|
|
vg_assert(VG_(stack)[i]
|
|
== ((UInt)(&VG_(stack)[i]) ^ 0xA4B3C2D1));
|
|
vg_assert(VG_(stack)[10000-1-i]
|
|
== ((UInt)(&VG_(stack)[10000-i-1]) ^ 0xABCD4321));
|
|
}
|
|
|
|
/* Check stuff pertaining to the memory check system. */
|
|
|
|
if (VG_(clo_instrument)) {
|
|
|
|
/* Check that nobody has spuriously claimed that the first or
|
|
last 16 pages of memory have become accessible [...] */
|
|
vg_assert(VG_(first_and_last_secondaries_look_plausible)());
|
|
}
|
|
|
|
/* --- Now some more expensive checks. ---*/
|
|
|
|
/* Once every 25 times, check some more expensive stuff. */
|
|
|
|
do_expensive_checks = False;
|
|
if (force_expensive)
|
|
do_expensive_checks = True;
|
|
if (VG_(sanity_level) > 1)
|
|
do_expensive_checks = True;
|
|
if (VG_(sanity_level) == 1
|
|
&& (VG_(sanity_fast_count) % 25) == 0)
|
|
do_expensive_checks = True;
|
|
|
|
if (do_expensive_checks) {
|
|
VG_(sanity_slow_count)++;
|
|
|
|
# if 0
|
|
{ void zzzmemscan(void); zzzmemscan(); }
|
|
# endif
|
|
|
|
if ((VG_(sanity_fast_count) % 250) == 0)
|
|
VG_(sanity_check_tc_tt)();
|
|
|
|
if (VG_(clo_instrument)) {
|
|
/* Make sure nobody changed the distinguished secondary. */
|
|
for (i = 0; i < 8192; i++)
|
|
vg_assert(vg_distinguished_secondary_map.abits[i]
|
|
== VGM_BYTE_INVALID);
|
|
for (i = 0; i < 65536; i++)
|
|
vg_assert(vg_distinguished_secondary_map.vbyte[i]
|
|
== VGM_BYTE_INVALID);
|
|
|
|
/* Make sure that the upper 3/4 of the primary map hasn't
|
|
been messed with. */
|
|
for (i = 65536; i < 262144; i++)
|
|
vg_assert(VG_(primary_map)[i]
|
|
== & vg_distinguished_secondary_map);
|
|
}
|
|
/*
|
|
if ((VG_(sanity_fast_count) % 500) == 0) VG_(mallocSanityCheckAll)();
|
|
*/
|
|
}
|
|
|
|
if (VG_(sanity_level) > 1) {
|
|
/* Check sanity of the low-level memory manager. Note that bugs
|
|
in the client's code can cause this to fail, so we don't do
|
|
this check unless specially asked for. And because it's
|
|
potentially very expensive. */
|
|
VG_(mallocSanityCheckAll)();
|
|
}
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Debugging machinery (turn on to debug). Something of a mess.
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Print the value tags on the 8 integer registers & flag reg. */
|
|
|
|
static void uint_to_bits ( UInt x, Char* str )
|
|
{
|
|
Int i;
|
|
Int w = 0;
|
|
/* str must point to a space of at least 36 bytes. */
|
|
for (i = 31; i >= 0; i--) {
|
|
str[w++] = (x & ( ((UInt)1) << i)) ? '1' : '0';
|
|
if (i == 24 || i == 16 || i == 8)
|
|
str[w++] = ' ';
|
|
}
|
|
str[w++] = 0;
|
|
vg_assert(w == 36);
|
|
}
|
|
|
|
/* Caution! Not vthread-safe; looks in VG_(baseBlock), not the thread
|
|
state table. */
|
|
|
|
void VG_(show_reg_tags) ( void )
|
|
{
|
|
Char buf1[36];
|
|
Char buf2[36];
|
|
UInt z_eax, z_ebx, z_ecx, z_edx,
|
|
z_esi, z_edi, z_ebp, z_esp, z_eflags;
|
|
|
|
z_eax = VG_(baseBlock)[VGOFF_(sh_eax)];
|
|
z_ebx = VG_(baseBlock)[VGOFF_(sh_ebx)];
|
|
z_ecx = VG_(baseBlock)[VGOFF_(sh_ecx)];
|
|
z_edx = VG_(baseBlock)[VGOFF_(sh_edx)];
|
|
z_esi = VG_(baseBlock)[VGOFF_(sh_esi)];
|
|
z_edi = VG_(baseBlock)[VGOFF_(sh_edi)];
|
|
z_ebp = VG_(baseBlock)[VGOFF_(sh_ebp)];
|
|
z_esp = VG_(baseBlock)[VGOFF_(sh_esp)];
|
|
z_eflags = VG_(baseBlock)[VGOFF_(sh_eflags)];
|
|
|
|
uint_to_bits(z_eflags, buf1);
|
|
VG_(message)(Vg_DebugMsg, "efl %\n", buf1);
|
|
|
|
uint_to_bits(z_eax, buf1);
|
|
uint_to_bits(z_ebx, buf2);
|
|
VG_(message)(Vg_DebugMsg, "eax %s ebx %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_ecx, buf1);
|
|
uint_to_bits(z_edx, buf2);
|
|
VG_(message)(Vg_DebugMsg, "ecx %s edx %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_esi, buf1);
|
|
uint_to_bits(z_edi, buf2);
|
|
VG_(message)(Vg_DebugMsg, "esi %s edi %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_ebp, buf1);
|
|
uint_to_bits(z_esp, buf2);
|
|
VG_(message)(Vg_DebugMsg, "ebp %s esp %s\n", buf1, buf2);
|
|
}
|
|
|
|
|
|
#if 0
|
|
/* For debugging only. Scan the address space and touch all allegedly
|
|
addressible words. Useful for establishing where Valgrind's idea of
|
|
addressibility has diverged from what the kernel believes. */
|
|
|
|
static
|
|
void zzzmemscan_notify_word ( Addr a, UInt w )
|
|
{
|
|
}
|
|
|
|
void zzzmemscan ( void )
|
|
{
|
|
Int n_notifies
|
|
= VG_(scan_all_valid_memory)( zzzmemscan_notify_word );
|
|
VG_(printf)("zzzmemscan: n_bytes = %d\n", 4 * n_notifies );
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
static Int zzz = 0;
|
|
|
|
void show_bb ( Addr eip_next )
|
|
{
|
|
VG_(printf)("[%4d] ", zzz);
|
|
VG_(show_reg_tags)( &VG_(m_shadow );
|
|
VG_(translate) ( eip_next, NULL, NULL, NULL );
|
|
}
|
|
#endif /* 0 */
|
|
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- end vg_memory.c ---*/
|
|
/*--------------------------------------------------------------------*/
|