mirror of
https://github.com/Zenithsiz/ftmemsim-valgrind.git
synced 2026-02-04 02:18:37 +00:00
Nicely cuts around 130 lines of code, spread over the core and several tools. git-svn-id: svn://svn.valgrind.org/valgrind/trunk@2422
1747 lines
51 KiB
C
1747 lines
51 KiB
C
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- MemCheck: Maintain bitmaps of memory, tracking the ---*/
|
|
/*--- accessibility (A) and validity (V) status of each byte. ---*/
|
|
/*--- mc_main.c ---*/
|
|
/*--------------------------------------------------------------------*/
|
|
|
|
/*
|
|
This file is part of MemCheck, a heavyweight Valgrind tool for
|
|
detecting memory errors.
|
|
|
|
Copyright (C) 2000-2004 Julian Seward
|
|
jseward@acm.org
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307, USA.
|
|
|
|
The GNU General Public License is contained in the file COPYING.
|
|
*/
|
|
|
|
#include "mc_include.h"
|
|
#include "memcheck.h" /* for client requests */
|
|
//#include "vg_profile.c"
|
|
|
|
/* Define to debug the mem audit system. */
|
|
/* #define VG_DEBUG_MEMORY */
|
|
|
|
#define DEBUG(fmt, args...) //VG_(printf)(fmt, ## args)
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Low-level support for memory checking. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* All reads and writes are checked against a memory map, which
|
|
records the state of all memory in the process. The memory map is
|
|
organised like this:
|
|
|
|
The top 16 bits of an address are used to index into a top-level
|
|
map table, containing 65536 entries. Each entry is a pointer to a
|
|
second-level map, which records the accesibililty and validity
|
|
permissions for the 65536 bytes indexed by the lower 16 bits of the
|
|
address. Each byte is represented by nine bits, one indicating
|
|
accessibility, the other eight validity. So each second-level map
|
|
contains 73728 bytes. This two-level arrangement conveniently
|
|
divides the 4G address space into 64k lumps, each size 64k bytes.
|
|
|
|
All entries in the primary (top-level) map must point to a valid
|
|
secondary (second-level) map. Since most of the 4G of address
|
|
space will not be in use -- ie, not mapped at all -- there is a
|
|
distinguished secondary map, which indicates `not addressible and
|
|
not valid' writeable for all bytes. Entries in the primary map for
|
|
which the entire 64k is not in use at all point at this
|
|
distinguished map.
|
|
|
|
[...] lots of stuff deleted due to out of date-ness
|
|
|
|
As a final optimisation, the alignment and address checks for
|
|
4-byte loads and stores are combined in a neat way. The primary
|
|
map is extended to have 262144 entries (2^18), rather than 2^16.
|
|
The top 3/4 of these entries are permanently set to the
|
|
distinguished secondary map. For a 4-byte load/store, the
|
|
top-level map is indexed not with (addr >> 16) but instead f(addr),
|
|
where
|
|
|
|
f( XXXX XXXX XXXX XXXX ____ ____ ____ __YZ )
|
|
= ____ ____ ____ __YZ XXXX XXXX XXXX XXXX or
|
|
= ____ ____ ____ __ZY XXXX XXXX XXXX XXXX
|
|
|
|
ie the lowest two bits are placed above the 16 high address bits.
|
|
If either of these two bits are nonzero, the address is misaligned;
|
|
this will select a secondary map from the upper 3/4 of the primary
|
|
map. Because this is always the distinguished secondary map, a
|
|
(bogus) address check failure will result. The failure handling
|
|
code can then figure out whether this is a genuine addr check
|
|
failure or whether it is a possibly-legitimate access at a
|
|
misaligned address.
|
|
*/
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Function declarations. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static UInt mc_rd_V4_SLOWLY ( Addr a );
|
|
static UInt mc_rd_V2_SLOWLY ( Addr a );
|
|
static UInt mc_rd_V1_SLOWLY ( Addr a );
|
|
static void mc_wr_V4_SLOWLY ( Addr a, UInt vbytes );
|
|
static void mc_wr_V2_SLOWLY ( Addr a, UInt vbytes );
|
|
static void mc_wr_V1_SLOWLY ( Addr a, UInt vbytes );
|
|
static void mc_fpu_read_check_SLOWLY ( Addr addr, Int size );
|
|
static void mc_fpu_write_check_SLOWLY ( Addr addr, Int size );
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Data defns. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
typedef
|
|
struct {
|
|
UChar abits[8192];
|
|
UChar vbyte[65536];
|
|
}
|
|
SecMap;
|
|
|
|
static SecMap* primary_map[ /*65536*/ 262144 ];
|
|
static SecMap distinguished_secondary_map;
|
|
|
|
static void init_shadow_memory ( void )
|
|
{
|
|
Int i;
|
|
|
|
for (i = 0; i < 8192; i++) /* Invalid address */
|
|
distinguished_secondary_map.abits[i] = VGM_BYTE_INVALID;
|
|
for (i = 0; i < 65536; i++) /* Invalid Value */
|
|
distinguished_secondary_map.vbyte[i] = VGM_BYTE_INVALID;
|
|
|
|
/* These entries gradually get overwritten as the used address
|
|
space expands. */
|
|
for (i = 0; i < 65536; i++)
|
|
primary_map[i] = &distinguished_secondary_map;
|
|
|
|
/* These ones should never change; it's a bug in Valgrind if they do. */
|
|
for (i = 65536; i < 262144; i++)
|
|
primary_map[i] = &distinguished_secondary_map;
|
|
}
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Basic bitmap management, reading and writing. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* Allocate and initialise a secondary map. */
|
|
|
|
static SecMap* alloc_secondary_map ( __attribute__ ((unused))
|
|
Char* caller )
|
|
{
|
|
SecMap* map;
|
|
UInt i;
|
|
PROF_EVENT(10);
|
|
|
|
/* Mark all bytes as invalid access and invalid value. */
|
|
|
|
/* It just happens that a SecMap occupies exactly 18 pages --
|
|
although this isn't important, so the following assert is
|
|
spurious. */
|
|
sk_assert(0 == (sizeof(SecMap) % VKI_BYTES_PER_PAGE));
|
|
map = (SecMap *)VG_(shadow_alloc)(sizeof(SecMap));
|
|
|
|
for (i = 0; i < 8192; i++)
|
|
map->abits[i] = VGM_BYTE_INVALID; /* Invalid address */
|
|
for (i = 0; i < 65536; i++)
|
|
map->vbyte[i] = VGM_BYTE_INVALID; /* Invalid Value */
|
|
|
|
/* VG_(printf)("ALLOC_2MAP(%s)\n", caller ); */
|
|
return map;
|
|
}
|
|
|
|
|
|
/* Basic reading/writing of the bitmaps, for byte-sized accesses. */
|
|
|
|
static __inline__ UChar get_abit ( Addr a )
|
|
{
|
|
SecMap* sm = primary_map[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(20);
|
|
# if 0
|
|
if (IS_DISTINGUISHED_SM(sm))
|
|
VG_(message)(Vg_DebugMsg,
|
|
"accessed distinguished 2ndary (A)map! 0x%x\n", a);
|
|
# endif
|
|
return BITARR_TEST(sm->abits, sm_off)
|
|
? VGM_BIT_INVALID : VGM_BIT_VALID;
|
|
}
|
|
|
|
static __inline__ UChar get_vbyte ( Addr a )
|
|
{
|
|
SecMap* sm = primary_map[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(21);
|
|
# if 0
|
|
if (IS_DISTINGUISHED_SM(sm))
|
|
VG_(message)(Vg_DebugMsg,
|
|
"accessed distinguished 2ndary (V)map! 0x%x\n", a);
|
|
# endif
|
|
return sm->vbyte[sm_off];
|
|
}
|
|
|
|
static /* __inline__ */ void set_abit ( Addr a, UChar abit )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
PROF_EVENT(22);
|
|
ENSURE_MAPPABLE(a, "set_abit");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
if (abit)
|
|
BITARR_SET(sm->abits, sm_off);
|
|
else
|
|
BITARR_CLEAR(sm->abits, sm_off);
|
|
}
|
|
|
|
static __inline__ void set_vbyte ( Addr a, UChar vbyte )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
PROF_EVENT(23);
|
|
ENSURE_MAPPABLE(a, "set_vbyte");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->vbyte[sm_off] = vbyte;
|
|
}
|
|
|
|
|
|
/* Reading/writing of the bitmaps, for aligned word-sized accesses. */
|
|
|
|
static __inline__ UChar get_abits4_ALIGNED ( Addr a )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar abits8;
|
|
PROF_EVENT(24);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
sk_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
abits8 = sm->abits[sm_off >> 3];
|
|
abits8 >>= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
abits8 &= 0x0F;
|
|
return abits8;
|
|
}
|
|
|
|
static UInt __inline__ get_vbytes4_ALIGNED ( Addr a )
|
|
{
|
|
SecMap* sm = primary_map[a >> 16];
|
|
UInt sm_off = a & 0xFFFF;
|
|
PROF_EVENT(25);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
sk_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
return ((UInt*)(sm->vbyte))[sm_off >> 2];
|
|
}
|
|
|
|
|
|
static void __inline__ set_vbytes4_ALIGNED ( Addr a, UInt vbytes )
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
ENSURE_MAPPABLE(a, "set_vbytes4_ALIGNED");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
PROF_EVENT(23);
|
|
# ifdef VG_DEBUG_MEMORY
|
|
sk_assert(IS_ALIGNED4_ADDR(a));
|
|
# endif
|
|
((UInt*)(sm->vbyte))[sm_off >> 2] = vbytes;
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Setting permissions over address ranges. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static void set_address_range_perms ( Addr a, UInt len,
|
|
UInt example_a_bit,
|
|
UInt example_v_bit )
|
|
{
|
|
UChar vbyte, abyte8;
|
|
UInt vword4, sm_off;
|
|
SecMap* sm;
|
|
|
|
PROF_EVENT(30);
|
|
|
|
if (len == 0)
|
|
return;
|
|
|
|
if (VG_(clo_verbosity) > 0) {
|
|
if (len > 100 * 1000 * 1000) {
|
|
VG_(message)(Vg_UserMsg,
|
|
"Warning: set address range perms: "
|
|
"large range %u, a %d, v %d",
|
|
len, example_a_bit, example_v_bit );
|
|
}
|
|
}
|
|
|
|
VGP_PUSHCC(VgpSetMem);
|
|
|
|
/* Requests to change permissions of huge address ranges may
|
|
indicate bugs in our machinery. 30,000,000 is arbitrary, but so
|
|
far all legitimate requests have fallen beneath that size. */
|
|
/* 4 Mar 02: this is just stupid; get rid of it. */
|
|
/* sk_assert(len < 30000000); */
|
|
|
|
/* Check the permissions make sense. */
|
|
sk_assert(example_a_bit == VGM_BIT_VALID
|
|
|| example_a_bit == VGM_BIT_INVALID);
|
|
sk_assert(example_v_bit == VGM_BIT_VALID
|
|
|| example_v_bit == VGM_BIT_INVALID);
|
|
if (example_a_bit == VGM_BIT_INVALID)
|
|
sk_assert(example_v_bit == VGM_BIT_INVALID);
|
|
|
|
/* The validity bits to write. */
|
|
vbyte = example_v_bit==VGM_BIT_VALID
|
|
? VGM_BYTE_VALID : VGM_BYTE_INVALID;
|
|
|
|
/* In order that we can charge through the address space at 8
|
|
bytes/main-loop iteration, make up some perms. */
|
|
abyte8 = (example_a_bit << 7)
|
|
| (example_a_bit << 6)
|
|
| (example_a_bit << 5)
|
|
| (example_a_bit << 4)
|
|
| (example_a_bit << 3)
|
|
| (example_a_bit << 2)
|
|
| (example_a_bit << 1)
|
|
| (example_a_bit << 0);
|
|
vword4 = (vbyte << 24) | (vbyte << 16) | (vbyte << 8) | vbyte;
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
/* Do it ... */
|
|
while (True) {
|
|
PROF_EVENT(31);
|
|
if (len == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
|
|
# else
|
|
/* Slowly do parts preceding 8-byte alignment. */
|
|
while (True) {
|
|
PROF_EVENT(31);
|
|
if (len == 0) break;
|
|
if ((a % 8) == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
|
|
if (len == 0) {
|
|
VGP_POPCC(VgpSetMem);
|
|
return;
|
|
}
|
|
sk_assert((a % 8) == 0 && len > 0);
|
|
|
|
/* Once aligned, go fast. */
|
|
while (True) {
|
|
PROF_EVENT(32);
|
|
if (len < 8) break;
|
|
ENSURE_MAPPABLE(a, "set_address_range_perms(fast)");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->abits[sm_off >> 3] = abyte8;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 0] = vword4;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 1] = vword4;
|
|
a += 8;
|
|
len -= 8;
|
|
}
|
|
|
|
if (len == 0) {
|
|
VGP_POPCC(VgpSetMem);
|
|
return;
|
|
}
|
|
sk_assert((a % 8) == 0 && len > 0 && len < 8);
|
|
|
|
/* Finish the upper fragment. */
|
|
while (True) {
|
|
PROF_EVENT(33);
|
|
if (len == 0) break;
|
|
set_abit ( a, example_a_bit );
|
|
set_vbyte ( a, vbyte );
|
|
a++;
|
|
len--;
|
|
}
|
|
# endif
|
|
|
|
/* Check that zero page and highest page have not been written to
|
|
-- this could happen with buggy syscall wrappers. Today
|
|
(2001-04-26) had precisely such a problem with __NR_setitimer. */
|
|
sk_assert(SK_(cheap_sanity_check)());
|
|
VGP_POPCC(VgpSetMem);
|
|
}
|
|
|
|
/* Set permissions for address ranges ... */
|
|
|
|
void MC_(make_noaccess) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(35);
|
|
DEBUG("MC_(make_noaccess)(%p, %x)\n", a, len);
|
|
set_address_range_perms ( a, len, VGM_BIT_INVALID, VGM_BIT_INVALID );
|
|
}
|
|
|
|
void MC_(make_writable) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(36);
|
|
DEBUG("MC_(make_writable)(%p, %x)\n", a, len);
|
|
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_INVALID );
|
|
}
|
|
|
|
void MC_(make_readable) ( Addr a, UInt len )
|
|
{
|
|
PROF_EVENT(37);
|
|
DEBUG("MC_(make_readable)(%p, 0x%x)\n", a, len);
|
|
set_address_range_perms ( a, len, VGM_BIT_VALID, VGM_BIT_VALID );
|
|
}
|
|
|
|
static __inline__
|
|
void make_aligned_word_writable(Addr a)
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar mask;
|
|
|
|
VGP_PUSHCC(VgpESPAdj);
|
|
ENSURE_MAPPABLE(a, "make_aligned_word_writable");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[sm_off >> 2] = VGM_WORD_INVALID;
|
|
mask = 0x0F;
|
|
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
/* mask now contains 1s where we wish to make address bits invalid (0s). */
|
|
sm->abits[sm_off >> 3] &= ~mask;
|
|
VGP_POPCC(VgpESPAdj);
|
|
}
|
|
|
|
static __inline__
|
|
void make_aligned_word_noaccess(Addr a)
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
UChar mask;
|
|
|
|
VGP_PUSHCC(VgpESPAdj);
|
|
ENSURE_MAPPABLE(a, "make_aligned_word_noaccess");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[sm_off >> 2] = VGM_WORD_INVALID;
|
|
mask = 0x0F;
|
|
mask <<= (a & 4 /* 100b */); /* a & 4 is either 0 or 4 */
|
|
/* mask now contains 1s where we wish to make address bits invalid (1s). */
|
|
sm->abits[sm_off >> 3] |= mask;
|
|
VGP_POPCC(VgpESPAdj);
|
|
}
|
|
|
|
/* Nb: by "aligned" here we mean 8-byte aligned */
|
|
static __inline__
|
|
void make_aligned_doubleword_writable(Addr a)
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
|
|
VGP_PUSHCC(VgpESPAdj);
|
|
ENSURE_MAPPABLE(a, "make_aligned_doubleword_writable");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->abits[sm_off >> 3] = VGM_BYTE_VALID;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 0] = VGM_WORD_INVALID;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 1] = VGM_WORD_INVALID;
|
|
VGP_POPCC(VgpESPAdj);
|
|
}
|
|
|
|
static __inline__
|
|
void make_aligned_doubleword_noaccess(Addr a)
|
|
{
|
|
SecMap* sm;
|
|
UInt sm_off;
|
|
|
|
VGP_PUSHCC(VgpESPAdj);
|
|
ENSURE_MAPPABLE(a, "make_aligned_doubleword_noaccess");
|
|
sm = primary_map[a >> 16];
|
|
sm_off = a & 0xFFFF;
|
|
sm->abits[sm_off >> 3] = VGM_BYTE_INVALID;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 0] = VGM_WORD_INVALID;
|
|
((UInt*)(sm->vbyte))[(sm_off >> 2) + 1] = VGM_WORD_INVALID;
|
|
VGP_POPCC(VgpESPAdj);
|
|
}
|
|
|
|
/* The %esp update handling functions */
|
|
ESP_UPDATE_HANDLERS ( make_aligned_word_writable,
|
|
make_aligned_word_noaccess,
|
|
make_aligned_doubleword_writable,
|
|
make_aligned_doubleword_noaccess,
|
|
MC_(make_writable),
|
|
MC_(make_noaccess)
|
|
);
|
|
|
|
/* Block-copy permissions (needed for implementing realloc()). */
|
|
static void mc_copy_address_range_state ( Addr src, Addr dst, UInt len )
|
|
{
|
|
UInt i;
|
|
|
|
DEBUG("mc_copy_address_range_state\n");
|
|
|
|
PROF_EVENT(40);
|
|
for (i = 0; i < len; i++) {
|
|
UChar abit = get_abit ( src+i );
|
|
UChar vbyte = get_vbyte ( src+i );
|
|
PROF_EVENT(41);
|
|
set_abit ( dst+i, abit );
|
|
set_vbyte ( dst+i, vbyte );
|
|
}
|
|
}
|
|
|
|
|
|
/* Check permissions for address range. If inadequate permissions
|
|
exist, *bad_addr is set to the offending address, so the caller can
|
|
know what it is. */
|
|
|
|
/* Returns True if [a .. a+len) is not addressible. Otherwise,
|
|
returns False, and if bad_addr is non-NULL, sets *bad_addr to
|
|
indicate the lowest failing address. Functions below are
|
|
similar. */
|
|
Bool MC_(check_noaccess) ( Addr a, UInt len, Addr* bad_addr )
|
|
{
|
|
UInt i;
|
|
UChar abit;
|
|
PROF_EVENT(42);
|
|
for (i = 0; i < len; i++) {
|
|
PROF_EVENT(43);
|
|
abit = get_abit(a);
|
|
if (abit == VGM_BIT_VALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
a++;
|
|
}
|
|
return True;
|
|
}
|
|
|
|
Bool MC_(check_writable) ( Addr a, UInt len, Addr* bad_addr )
|
|
{
|
|
UInt i;
|
|
UChar abit;
|
|
PROF_EVENT(42);
|
|
for (i = 0; i < len; i++) {
|
|
PROF_EVENT(43);
|
|
abit = get_abit(a);
|
|
if (abit == VGM_BIT_INVALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
a++;
|
|
}
|
|
return True;
|
|
}
|
|
|
|
Bool MC_(check_readable) ( Addr a, UInt len, Addr* bad_addr )
|
|
{
|
|
UInt i;
|
|
UChar abit;
|
|
UChar vbyte;
|
|
|
|
PROF_EVENT(44);
|
|
DEBUG("MC_(check_readable)\n");
|
|
for (i = 0; i < len; i++) {
|
|
abit = get_abit(a);
|
|
vbyte = get_vbyte(a);
|
|
PROF_EVENT(45);
|
|
if (abit != VGM_BIT_VALID || vbyte != VGM_BYTE_VALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
a++;
|
|
}
|
|
return True;
|
|
}
|
|
|
|
|
|
/* Check a zero-terminated ascii string. Tricky -- don't want to
|
|
examine the actual bytes, to find the end, until we're sure it is
|
|
safe to do so. */
|
|
|
|
static Bool mc_check_readable_asciiz ( Addr a, Addr* bad_addr )
|
|
{
|
|
UChar abit;
|
|
UChar vbyte;
|
|
PROF_EVENT(46);
|
|
DEBUG("mc_check_readable_asciiz\n");
|
|
while (True) {
|
|
PROF_EVENT(47);
|
|
abit = get_abit(a);
|
|
vbyte = get_vbyte(a);
|
|
if (abit != VGM_BIT_VALID || vbyte != VGM_BYTE_VALID) {
|
|
if (bad_addr != NULL) *bad_addr = a;
|
|
return False;
|
|
}
|
|
/* Ok, a is safe to read. */
|
|
if (* ((UChar*)a) == 0) return True;
|
|
a++;
|
|
}
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Memory event handlers ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static
|
|
void mc_check_is_writable ( CorePart part, ThreadId tid, Char* s,
|
|
Addr base, UInt size )
|
|
{
|
|
Bool ok;
|
|
Addr bad_addr;
|
|
|
|
VGP_PUSHCC(VgpCheckMem);
|
|
|
|
/* VG_(message)(Vg_DebugMsg,"check is writable: %x .. %x",
|
|
base,base+size-1); */
|
|
ok = MC_(check_writable) ( base, size, &bad_addr );
|
|
if (!ok) {
|
|
switch (part) {
|
|
case Vg_CoreSysCall:
|
|
MAC_(record_param_error) ( tid, bad_addr, /*isWrite =*/True, s );
|
|
break;
|
|
|
|
case Vg_CorePThread:
|
|
case Vg_CoreSignal:
|
|
MAC_(record_core_mem_error)( tid, /*isWrite=*/True, s );
|
|
break;
|
|
|
|
default:
|
|
VG_(skin_panic)("mc_check_is_writable: unexpected CorePart");
|
|
}
|
|
}
|
|
|
|
VGP_POPCC(VgpCheckMem);
|
|
}
|
|
|
|
static
|
|
void mc_check_is_readable ( CorePart part, ThreadId tid, Char* s,
|
|
Addr base, UInt size )
|
|
{
|
|
Bool ok;
|
|
Addr bad_addr;
|
|
|
|
VGP_PUSHCC(VgpCheckMem);
|
|
|
|
/* VG_(message)(Vg_DebugMsg,"check is readable: %x .. %x",
|
|
base,base+size-1); */
|
|
ok = MC_(check_readable) ( base, size, &bad_addr );
|
|
if (!ok) {
|
|
switch (part) {
|
|
case Vg_CoreSysCall:
|
|
MAC_(record_param_error) ( tid, bad_addr, /*isWrite =*/False, s );
|
|
break;
|
|
|
|
case Vg_CorePThread:
|
|
MAC_(record_core_mem_error)( tid, /*isWrite=*/False, s );
|
|
break;
|
|
|
|
/* If we're being asked to jump to a silly address, record an error
|
|
message before potentially crashing the entire system. */
|
|
case Vg_CoreTranslate:
|
|
MAC_(record_jump_error)( tid, bad_addr );
|
|
break;
|
|
|
|
default:
|
|
VG_(skin_panic)("mc_check_is_readable: unexpected CorePart");
|
|
}
|
|
}
|
|
VGP_POPCC(VgpCheckMem);
|
|
}
|
|
|
|
static
|
|
void mc_check_is_readable_asciiz ( CorePart part, ThreadId tid,
|
|
Char* s, Addr str )
|
|
{
|
|
Bool ok = True;
|
|
Addr bad_addr;
|
|
/* VG_(message)(Vg_DebugMsg,"check is readable asciiz: 0x%x",str); */
|
|
|
|
VGP_PUSHCC(VgpCheckMem);
|
|
|
|
sk_assert(part == Vg_CoreSysCall);
|
|
ok = mc_check_readable_asciiz ( (Addr)str, &bad_addr );
|
|
if (!ok) {
|
|
MAC_(record_param_error) ( tid, bad_addr, /*is_writable =*/False, s );
|
|
}
|
|
|
|
VGP_POPCC(VgpCheckMem);
|
|
}
|
|
|
|
|
|
static
|
|
void mc_new_mem_startup( Addr a, UInt len, Bool rr, Bool ww, Bool xx )
|
|
{
|
|
/* Ignore the permissions, just make it readable. Seems to work... */
|
|
DEBUG("mc_new_mem_startup(%p, %u, rr=%u, ww=%u, xx=%u)\n", a,len,rr,ww,xx);
|
|
MC_(make_readable)(a, len);
|
|
}
|
|
|
|
static
|
|
void mc_new_mem_heap ( Addr a, UInt len, Bool is_inited )
|
|
{
|
|
if (is_inited) {
|
|
MC_(make_readable)(a, len);
|
|
} else {
|
|
MC_(make_writable)(a, len);
|
|
}
|
|
}
|
|
|
|
static
|
|
void mc_set_perms (Addr a, UInt len, Bool rr, Bool ww, Bool xx)
|
|
{
|
|
DEBUG("mc_set_perms(%p, %u, rr=%u ww=%u, xx=%u)\n", a, len, rr, ww, xx);
|
|
if (rr) MC_(make_readable)(a, len);
|
|
else if (ww) MC_(make_writable)(a, len);
|
|
else MC_(make_noaccess)(a, len);
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Register event handlers ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static void mc_post_regs_write_init ( void )
|
|
{
|
|
UInt i;
|
|
for (i = R_EAX; i <= R_EDI; i++)
|
|
VG_(set_shadow_archreg)( i, VGM_WORD_VALID );
|
|
VG_(set_shadow_eflags)( VGM_EFLAGS_VALID );
|
|
}
|
|
|
|
static void mc_post_reg_write(ThreadId tid, UInt reg)
|
|
{
|
|
VG_(set_thread_shadow_archreg)( tid, reg, VGM_WORD_VALID );
|
|
}
|
|
|
|
static void mc_post_reg_write_clientcall(ThreadId tid, UInt reg, Addr f )
|
|
{
|
|
VG_(set_thread_shadow_archreg)( tid, reg, VGM_WORD_VALID );
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Functions called directly from generated code. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static __inline__ UInt rotateRight16 ( UInt x )
|
|
{
|
|
/* Amazingly, gcc turns this into a single rotate insn. */
|
|
return (x >> 16) | (x << 16);
|
|
}
|
|
|
|
|
|
static __inline__ UInt shiftRight16 ( UInt x )
|
|
{
|
|
return x >> 16;
|
|
}
|
|
|
|
|
|
/* Read/write 1/2/4 sized V bytes, and emit an address error if
|
|
needed. */
|
|
|
|
/* VG_(helperc_{LD,ST}V{1,2,4}) handle the common case fast.
|
|
Under all other circumstances, it defers to the relevant _SLOWLY
|
|
function, which can handle all situations.
|
|
*/
|
|
__attribute__ ((regparm(1)))
|
|
UInt MC_(helperc_LOADV4) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return mc_rd_V4_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x3FFFF;
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
UChar abits = sm->abits[a_off];
|
|
abits >>= (a & 4);
|
|
abits &= 15;
|
|
PROF_EVENT(60);
|
|
if (abits == VGM_NIBBLE_VALID) {
|
|
/* Handle common case quickly: a is suitably aligned, is mapped,
|
|
and is addressible. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return ((UInt*)(sm->vbyte))[ v_off >> 2 ];
|
|
} else {
|
|
/* Slow but general case. */
|
|
return mc_rd_V4_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
__attribute__ ((regparm(2)))
|
|
void MC_(helperc_STOREV4) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
mc_wr_V4_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x3FFFF;
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
UChar abits = sm->abits[a_off];
|
|
abits >>= (a & 4);
|
|
abits &= 15;
|
|
PROF_EVENT(61);
|
|
if (abits == VGM_NIBBLE_VALID) {
|
|
/* Handle common case quickly: a is suitably aligned, is mapped,
|
|
and is addressible. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = vbytes;
|
|
} else {
|
|
/* Slow but general case. */
|
|
mc_wr_V4_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
__attribute__ ((regparm(1)))
|
|
UInt MC_(helperc_LOADV2) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return mc_rd_V2_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x1FFFF;
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(62);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return 0xFFFF0000
|
|
|
|
|
(UInt)( ((UShort*)(sm->vbyte))[ v_off >> 1 ] );
|
|
} else {
|
|
/* Slow but general case. */
|
|
return mc_rd_V2_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
__attribute__ ((regparm(2)))
|
|
void MC_(helperc_STOREV2) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
mc_wr_V2_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = rotateRight16(a) & 0x1FFFF;
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(63);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UShort*)(sm->vbyte))[ v_off >> 1 ] = vbytes & 0x0000FFFF;
|
|
} else {
|
|
/* Slow but general case. */
|
|
mc_wr_V2_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
__attribute__ ((regparm(1)))
|
|
UInt MC_(helperc_LOADV1) ( Addr a )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
return mc_rd_V1_SLOWLY(a);
|
|
# else
|
|
UInt sec_no = shiftRight16(a);
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(64);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
return 0xFFFFFF00
|
|
|
|
|
(UInt)( ((UChar*)(sm->vbyte))[ v_off ] );
|
|
} else {
|
|
/* Slow but general case. */
|
|
return mc_rd_V1_SLOWLY(a);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
__attribute__ ((regparm(2)))
|
|
void MC_(helperc_STOREV1) ( Addr a, UInt vbytes )
|
|
{
|
|
# ifdef VG_DEBUG_MEMORY
|
|
mc_wr_V1_SLOWLY(a, vbytes);
|
|
# else
|
|
UInt sec_no = shiftRight16(a);
|
|
SecMap* sm = primary_map[sec_no];
|
|
UInt a_off = (a & 0xFFFF) >> 3;
|
|
PROF_EVENT(65);
|
|
if (sm->abits[a_off] == VGM_BYTE_VALID) {
|
|
/* Handle common case quickly. */
|
|
UInt v_off = a & 0xFFFF;
|
|
((UChar*)(sm->vbyte))[ v_off ] = vbytes & 0x000000FF;
|
|
} else {
|
|
/* Slow but general case. */
|
|
mc_wr_V1_SLOWLY(a, vbytes);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Fallback functions to handle cases that the above ---*/
|
|
/*--- VG_(helperc_{LD,ST}V{1,2,4}) can't manage. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
static UInt mc_rd_V4_SLOWLY ( Addr a )
|
|
{
|
|
Bool a0ok, a1ok, a2ok, a3ok;
|
|
UInt vb0, vb1, vb2, vb3;
|
|
|
|
PROF_EVENT(70);
|
|
|
|
/* First establish independently the addressibility of the 4 bytes
|
|
involved. */
|
|
a0ok = get_abit(a+0) == VGM_BIT_VALID;
|
|
a1ok = get_abit(a+1) == VGM_BIT_VALID;
|
|
a2ok = get_abit(a+2) == VGM_BIT_VALID;
|
|
a3ok = get_abit(a+3) == VGM_BIT_VALID;
|
|
|
|
/* Also get the validity bytes for the address. */
|
|
vb0 = (UInt)get_vbyte(a+0);
|
|
vb1 = (UInt)get_vbyte(a+1);
|
|
vb2 = (UInt)get_vbyte(a+2);
|
|
vb3 = (UInt)get_vbyte(a+3);
|
|
|
|
/* Now distinguish 3 cases */
|
|
|
|
/* Case 1: the address is completely valid, so:
|
|
- no addressing error
|
|
- return V bytes as read from memory
|
|
*/
|
|
if (a0ok && a1ok && a2ok && a3ok) {
|
|
UInt vw = VGM_WORD_INVALID;
|
|
vw <<= 8; vw |= vb3;
|
|
vw <<= 8; vw |= vb2;
|
|
vw <<= 8; vw |= vb1;
|
|
vw <<= 8; vw |= vb0;
|
|
return vw;
|
|
}
|
|
|
|
/* Case 2: the address is completely invalid.
|
|
- emit addressing error
|
|
- return V word indicating validity.
|
|
This sounds strange, but if we make loads from invalid addresses
|
|
give invalid data, we also risk producing a number of confusing
|
|
undefined-value errors later, which confuses the fact that the
|
|
error arose in the first place from an invalid address.
|
|
*/
|
|
/* VG_(printf)("%p (%d %d %d %d)\n", a, a0ok, a1ok, a2ok, a3ok); */
|
|
if (!MAC_(clo_partial_loads_ok)
|
|
|| ((a & 3) != 0)
|
|
|| (!a0ok && !a1ok && !a2ok && !a3ok)) {
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 4, False );
|
|
return (VGM_BYTE_VALID << 24) | (VGM_BYTE_VALID << 16)
|
|
| (VGM_BYTE_VALID << 8) | VGM_BYTE_VALID;
|
|
}
|
|
|
|
/* Case 3: the address is partially valid.
|
|
- no addressing error
|
|
- returned V word is invalid where the address is invalid,
|
|
and contains V bytes from memory otherwise.
|
|
Case 3 is only allowed if MC_(clo_partial_loads_ok) is True
|
|
(which is the default), and the address is 4-aligned.
|
|
If not, Case 2 will have applied.
|
|
*/
|
|
sk_assert(MAC_(clo_partial_loads_ok));
|
|
{
|
|
UInt vw = VGM_WORD_INVALID;
|
|
vw <<= 8; vw |= (a3ok ? vb3 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a2ok ? vb2 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a1ok ? vb1 : VGM_BYTE_INVALID);
|
|
vw <<= 8; vw |= (a0ok ? vb0 : VGM_BYTE_INVALID);
|
|
return vw;
|
|
}
|
|
}
|
|
|
|
static void mc_wr_V4_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(71);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+2) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+3) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+1, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+2, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+3, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 4, True );
|
|
}
|
|
|
|
static UInt mc_rd_V2_SLOWLY ( Addr a )
|
|
{
|
|
/* Check the address for validity. */
|
|
UInt vw = VGM_WORD_INVALID;
|
|
Bool aerr = False;
|
|
PROF_EVENT(72);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Fetch the V bytes, remembering to do it little-endian-ly. */
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+1);
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+0);
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr) {
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 2, False );
|
|
vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
|
|
| (VGM_BYTE_VALID << 8) | (VGM_BYTE_VALID);
|
|
}
|
|
return vw;
|
|
}
|
|
|
|
static void mc_wr_V2_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(73);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
if (get_abit(a+1) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF ); vbytes >>= 8;
|
|
set_vbyte( a+1, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 2, True );
|
|
}
|
|
|
|
static UInt mc_rd_V1_SLOWLY ( Addr a )
|
|
{
|
|
/* Check the address for validity. */
|
|
UInt vw = VGM_WORD_INVALID;
|
|
Bool aerr = False;
|
|
PROF_EVENT(74);
|
|
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Fetch the V byte. */
|
|
vw <<= 8; vw |= (UInt)get_vbyte(a+0);
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr) {
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 1, False );
|
|
vw = (VGM_BYTE_INVALID << 24) | (VGM_BYTE_INVALID << 16)
|
|
| (VGM_BYTE_INVALID << 8) | (VGM_BYTE_VALID);
|
|
}
|
|
return vw;
|
|
}
|
|
|
|
static void mc_wr_V1_SLOWLY ( Addr a, UInt vbytes )
|
|
{
|
|
/* Check the address for validity. */
|
|
Bool aerr = False;
|
|
PROF_EVENT(75);
|
|
if (get_abit(a+0) != VGM_BIT_VALID) aerr = True;
|
|
|
|
/* Store the V bytes, remembering to do it little-endian-ly. */
|
|
set_vbyte( a+0, vbytes & 0x000000FF );
|
|
|
|
/* If an address error has happened, report it. */
|
|
if (aerr)
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), a, 1, True );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Called from generated code, or from the assembly helpers.
|
|
Handlers for value check failures.
|
|
------------------------------------------------------------------ */
|
|
|
|
void MC_(helperc_value_check0_fail) ( void )
|
|
{
|
|
MC_(record_value_error) ( VG_(get_current_tid)(), 0 );
|
|
}
|
|
|
|
void MC_(helperc_value_check1_fail) ( void )
|
|
{
|
|
MC_(record_value_error) ( VG_(get_current_tid)(), 1 );
|
|
}
|
|
|
|
void MC_(helperc_value_check2_fail) ( void )
|
|
{
|
|
MC_(record_value_error) ( VG_(get_current_tid)(), 2 );
|
|
}
|
|
|
|
void MC_(helperc_value_check4_fail) ( void )
|
|
{
|
|
MC_(record_value_error) ( VG_(get_current_tid)(), 4 );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
FPU load and store checks, called from generated code.
|
|
------------------------------------------------------------------ */
|
|
|
|
__attribute__ ((regparm(2)))
|
|
void MC_(fpu_read_check) ( Addr addr, Int size )
|
|
{
|
|
/* Ensure the read area is both addressible and valid (ie,
|
|
readable). If there's an address error, don't report a value
|
|
error too; but if there isn't an address error, check for a
|
|
value error.
|
|
|
|
Try to be reasonably fast on the common case; wimp out and defer
|
|
to mc_fpu_read_check_SLOWLY for everything else. */
|
|
|
|
SecMap* sm;
|
|
UInt sm_off, v_off, a_off;
|
|
Addr addr4;
|
|
|
|
PROF_EVENT(80);
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
mc_fpu_read_check_SLOWLY ( addr, size );
|
|
# else
|
|
|
|
if (size == 4) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow4;
|
|
PROF_EVENT(81);
|
|
/* Properly aligned. */
|
|
sm = primary_map[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow4;
|
|
/* Properly aligned and addressible. */
|
|
v_off = addr & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow4;
|
|
/* Properly aligned, addressible and with valid data. */
|
|
return;
|
|
slow4:
|
|
mc_fpu_read_check_SLOWLY ( addr, 4 );
|
|
return;
|
|
}
|
|
|
|
if (size == 8) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow8;
|
|
PROF_EVENT(82);
|
|
/* Properly aligned. Do it in two halves. */
|
|
addr4 = addr + 4;
|
|
/* First half. */
|
|
sm = primary_map[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* First half properly aligned and addressible. */
|
|
v_off = addr & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow8;
|
|
/* Second half. */
|
|
sm = primary_map[addr4 >> 16];
|
|
sm_off = addr4 & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* Second half properly aligned and addressible. */
|
|
v_off = addr4 & 0xFFFF;
|
|
if (((UInt*)(sm->vbyte))[ v_off >> 2 ] != VGM_WORD_VALID)
|
|
goto slow8;
|
|
/* Both halves properly aligned, addressible and with valid
|
|
data. */
|
|
return;
|
|
slow8:
|
|
mc_fpu_read_check_SLOWLY ( addr, 8 );
|
|
return;
|
|
}
|
|
|
|
/* Can't be bothered to huff'n'puff to make these (allegedly) rare
|
|
cases go quickly. */
|
|
if (size == 2) {
|
|
PROF_EVENT(83);
|
|
mc_fpu_read_check_SLOWLY ( addr, 2 );
|
|
return;
|
|
}
|
|
|
|
if (size == 16 /*SSE*/
|
|
|| size == 10 || size == 28 || size == 108 || size == 512) {
|
|
PROF_EVENT(84);
|
|
mc_fpu_read_check_SLOWLY ( addr, size );
|
|
return;
|
|
}
|
|
|
|
VG_(printf)("size is %d\n", size);
|
|
VG_(skin_panic)("MC_(fpu_read_check): unhandled size");
|
|
# endif
|
|
}
|
|
|
|
|
|
__attribute__ ((regparm(2)))
|
|
void MC_(fpu_write_check) ( Addr addr, Int size )
|
|
{
|
|
/* Ensure the written area is addressible, and moan if otherwise.
|
|
If it is addressible, make it valid, otherwise invalid.
|
|
*/
|
|
|
|
SecMap* sm;
|
|
UInt sm_off, v_off, a_off;
|
|
Addr addr4;
|
|
|
|
PROF_EVENT(85);
|
|
|
|
# ifdef VG_DEBUG_MEMORY
|
|
mc_fpu_write_check_SLOWLY ( addr, size );
|
|
# else
|
|
|
|
if (size == 4) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow4;
|
|
PROF_EVENT(86);
|
|
/* Properly aligned. */
|
|
sm = primary_map[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow4;
|
|
/* Properly aligned and addressible. Make valid. */
|
|
v_off = addr & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
return;
|
|
slow4:
|
|
mc_fpu_write_check_SLOWLY ( addr, 4 );
|
|
return;
|
|
}
|
|
|
|
if (size == 8) {
|
|
if (!IS_ALIGNED4_ADDR(addr)) goto slow8;
|
|
PROF_EVENT(87);
|
|
/* Properly aligned. Do it in two halves. */
|
|
addr4 = addr + 4;
|
|
/* First half. */
|
|
sm = primary_map[addr >> 16];
|
|
sm_off = addr & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* First half properly aligned and addressible. Make valid. */
|
|
v_off = addr & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
/* Second half. */
|
|
sm = primary_map[addr4 >> 16];
|
|
sm_off = addr4 & 0xFFFF;
|
|
a_off = sm_off >> 3;
|
|
if (sm->abits[a_off] != VGM_BYTE_VALID) goto slow8;
|
|
/* Second half properly aligned and addressible. */
|
|
v_off = addr4 & 0xFFFF;
|
|
((UInt*)(sm->vbyte))[ v_off >> 2 ] = VGM_WORD_VALID;
|
|
/* Properly aligned, addressible and with valid data. */
|
|
return;
|
|
slow8:
|
|
mc_fpu_write_check_SLOWLY ( addr, 8 );
|
|
return;
|
|
}
|
|
|
|
/* Can't be bothered to huff'n'puff to make these (allegedly) rare
|
|
cases go quickly. */
|
|
if (size == 2) {
|
|
PROF_EVENT(88);
|
|
mc_fpu_write_check_SLOWLY ( addr, 2 );
|
|
return;
|
|
}
|
|
|
|
if (size == 16 /*SSE*/
|
|
|| size == 10 || size == 28 || size == 108 || size == 512) {
|
|
PROF_EVENT(89);
|
|
mc_fpu_write_check_SLOWLY ( addr, size );
|
|
return;
|
|
}
|
|
|
|
VG_(printf)("size is %d\n", size);
|
|
VG_(skin_panic)("MC_(fpu_write_check): unhandled size");
|
|
# endif
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Slow, general cases for FPU load and store checks.
|
|
------------------------------------------------------------------ */
|
|
|
|
/* Generic version. Test for both addr and value errors, but if
|
|
there's an addr error, don't report a value error even if it
|
|
exists. */
|
|
|
|
void mc_fpu_read_check_SLOWLY ( Addr addr, Int size )
|
|
{
|
|
Int i;
|
|
Bool aerr = False;
|
|
Bool verr = False;
|
|
PROF_EVENT(90);
|
|
for (i = 0; i < size; i++) {
|
|
PROF_EVENT(91);
|
|
if (get_abit(addr+i) != VGM_BIT_VALID)
|
|
aerr = True;
|
|
if (get_vbyte(addr+i) != VGM_BYTE_VALID)
|
|
verr = True;
|
|
}
|
|
|
|
if (aerr) {
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), addr, size, False );
|
|
} else {
|
|
if (verr)
|
|
MC_(record_value_error)( VG_(get_current_tid)(), size );
|
|
}
|
|
}
|
|
|
|
|
|
/* Generic version. Test for addr errors. Valid addresses are
|
|
given valid values, and invalid addresses invalid values. */
|
|
|
|
void mc_fpu_write_check_SLOWLY ( Addr addr, Int size )
|
|
{
|
|
Int i;
|
|
Addr a_here;
|
|
Bool a_ok;
|
|
Bool aerr = False;
|
|
PROF_EVENT(92);
|
|
for (i = 0; i < size; i++) {
|
|
PROF_EVENT(93);
|
|
a_here = addr+i;
|
|
a_ok = get_abit(a_here) == VGM_BIT_VALID;
|
|
if (a_ok) {
|
|
set_vbyte(a_here, VGM_BYTE_VALID);
|
|
} else {
|
|
set_vbyte(a_here, VGM_BYTE_INVALID);
|
|
aerr = True;
|
|
}
|
|
}
|
|
if (aerr) {
|
|
MAC_(record_address_error)( VG_(get_current_tid)(), addr, size, True );
|
|
}
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Metadata get/set functions, for client requests. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* Copy Vbits for src into vbits. Returns: 1 == OK, 2 == alignment
|
|
error, 3 == addressing error. */
|
|
Int MC_(get_or_set_vbits_for_client) (
|
|
ThreadId tid,
|
|
Addr dataV,
|
|
Addr vbitsV,
|
|
UInt size,
|
|
Bool setting /* True <=> set vbits, False <=> get vbits */
|
|
)
|
|
{
|
|
Bool addressibleD = True;
|
|
Bool addressibleV = True;
|
|
UInt* data = (UInt*)dataV;
|
|
UInt* vbits = (UInt*)vbitsV;
|
|
UInt szW = size / 4; /* sigh */
|
|
UInt i;
|
|
UInt* dataP = NULL; /* bogus init to keep gcc happy */
|
|
UInt* vbitsP = NULL; /* ditto */
|
|
|
|
/* Check alignment of args. */
|
|
if (!(IS_ALIGNED4_ADDR(data) && IS_ALIGNED4_ADDR(vbits)))
|
|
return 2;
|
|
if ((size & 3) != 0)
|
|
return 2;
|
|
|
|
/* Check that arrays are addressible. */
|
|
for (i = 0; i < szW; i++) {
|
|
dataP = &data[i];
|
|
vbitsP = &vbits[i];
|
|
if (get_abits4_ALIGNED((Addr)dataP) != VGM_NIBBLE_VALID) {
|
|
addressibleD = False;
|
|
break;
|
|
}
|
|
if (get_abits4_ALIGNED((Addr)vbitsP) != VGM_NIBBLE_VALID) {
|
|
addressibleV = False;
|
|
break;
|
|
}
|
|
}
|
|
if (!addressibleD) {
|
|
MAC_(record_address_error)( tid, (Addr)dataP, 4,
|
|
setting ? True : False );
|
|
return 3;
|
|
}
|
|
if (!addressibleV) {
|
|
MAC_(record_address_error)( tid, (Addr)vbitsP, 4,
|
|
setting ? False : True );
|
|
return 3;
|
|
}
|
|
|
|
/* Do the copy */
|
|
if (setting) {
|
|
/* setting */
|
|
for (i = 0; i < szW; i++) {
|
|
if (get_vbytes4_ALIGNED( (Addr)&vbits[i] ) != VGM_WORD_VALID)
|
|
MC_(record_value_error)(tid, 4);
|
|
set_vbytes4_ALIGNED( (Addr)&data[i], vbits[i] );
|
|
}
|
|
} else {
|
|
/* getting */
|
|
for (i = 0; i < szW; i++) {
|
|
vbits[i] = get_vbytes4_ALIGNED( (Addr)&data[i] );
|
|
set_vbytes4_ALIGNED( (Addr)&vbits[i], VGM_WORD_VALID );
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Detecting leaked (unreachable) malloc'd blocks. ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
/* For the memory leak detector, say whether an entire 64k chunk of
|
|
address space is possibly in use, or not. If in doubt return
|
|
True.
|
|
*/
|
|
static
|
|
Bool mc_is_valid_64k_chunk ( UInt chunk_number )
|
|
{
|
|
sk_assert(chunk_number >= 0 && chunk_number < 65536);
|
|
if (IS_DISTINGUISHED_SM(primary_map[chunk_number])) {
|
|
/* Definitely not in use. */
|
|
return False;
|
|
} else {
|
|
return True;
|
|
}
|
|
}
|
|
|
|
|
|
/* For the memory leak detector, say whether or not a given word
|
|
address is to be regarded as valid. */
|
|
static
|
|
Bool mc_is_valid_address ( Addr a )
|
|
{
|
|
UInt vbytes;
|
|
UChar abits;
|
|
sk_assert(IS_ALIGNED4_ADDR(a));
|
|
abits = get_abits4_ALIGNED(a);
|
|
vbytes = get_vbytes4_ALIGNED(a);
|
|
if (abits == VGM_NIBBLE_VALID && vbytes == VGM_WORD_VALID) {
|
|
return True;
|
|
} else {
|
|
return False;
|
|
}
|
|
}
|
|
|
|
|
|
/* Leak detector for this skin. We don't actually do anything, merely
|
|
run the generic leak detector with suitable parameters for this
|
|
skin. */
|
|
void MC_(detect_memory_leaks) ( void )
|
|
{
|
|
MAC_(do_detect_memory_leaks) ( mc_is_valid_64k_chunk, mc_is_valid_address );
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Sanity check machinery (permanently engaged).
|
|
------------------------------------------------------------------ */
|
|
|
|
Bool SK_(cheap_sanity_check) ( void )
|
|
{
|
|
/* nothing useful we can rapidly check */
|
|
return True;
|
|
}
|
|
|
|
Bool SK_(expensive_sanity_check) ( void )
|
|
{
|
|
Int i;
|
|
|
|
/* Make sure nobody changed the distinguished secondary. */
|
|
for (i = 0; i < 8192; i++)
|
|
if (distinguished_secondary_map.abits[i] != VGM_BYTE_INVALID)
|
|
return False;
|
|
|
|
for (i = 0; i < 65536; i++)
|
|
if (distinguished_secondary_map.vbyte[i] != VGM_BYTE_INVALID)
|
|
return False;
|
|
|
|
/* Make sure that the upper 3/4 of the primary map hasn't
|
|
been messed with. */
|
|
for (i = 65536; i < 262144; i++)
|
|
if (primary_map[i] != & distinguished_secondary_map)
|
|
return False;
|
|
|
|
return True;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------
|
|
Debugging machinery (turn on to debug). Something of a mess.
|
|
------------------------------------------------------------------ */
|
|
|
|
#if 0
|
|
/* Print the value tags on the 8 integer registers & flag reg. */
|
|
|
|
static void uint_to_bits ( UInt x, Char* str )
|
|
{
|
|
Int i;
|
|
Int w = 0;
|
|
/* str must point to a space of at least 36 bytes. */
|
|
for (i = 31; i >= 0; i--) {
|
|
str[w++] = (x & ( ((UInt)1) << i)) ? '1' : '0';
|
|
if (i == 24 || i == 16 || i == 8)
|
|
str[w++] = ' ';
|
|
}
|
|
str[w++] = 0;
|
|
sk_assert(w == 36);
|
|
}
|
|
|
|
/* Caution! Not vthread-safe; looks in VG_(baseBlock), not the thread
|
|
state table. */
|
|
|
|
static void vg_show_reg_tags ( void )
|
|
{
|
|
Char buf1[36];
|
|
Char buf2[36];
|
|
UInt z_eax, z_ebx, z_ecx, z_edx,
|
|
z_esi, z_edi, z_ebp, z_esp, z_eflags;
|
|
|
|
z_eax = VG_(baseBlock)[VGOFF_(sh_eax)];
|
|
z_ebx = VG_(baseBlock)[VGOFF_(sh_ebx)];
|
|
z_ecx = VG_(baseBlock)[VGOFF_(sh_ecx)];
|
|
z_edx = VG_(baseBlock)[VGOFF_(sh_edx)];
|
|
z_esi = VG_(baseBlock)[VGOFF_(sh_esi)];
|
|
z_edi = VG_(baseBlock)[VGOFF_(sh_edi)];
|
|
z_ebp = VG_(baseBlock)[VGOFF_(sh_ebp)];
|
|
z_esp = VG_(baseBlock)[VGOFF_(sh_esp)];
|
|
z_eflags = VG_(baseBlock)[VGOFF_(sh_eflags)];
|
|
|
|
uint_to_bits(z_eflags, buf1);
|
|
VG_(message)(Vg_DebugMsg, "efl %s\n", buf1);
|
|
|
|
uint_to_bits(z_eax, buf1);
|
|
uint_to_bits(z_ebx, buf2);
|
|
VG_(message)(Vg_DebugMsg, "eax %s ebx %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_ecx, buf1);
|
|
uint_to_bits(z_edx, buf2);
|
|
VG_(message)(Vg_DebugMsg, "ecx %s edx %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_esi, buf1);
|
|
uint_to_bits(z_edi, buf2);
|
|
VG_(message)(Vg_DebugMsg, "esi %s edi %s\n", buf1, buf2);
|
|
|
|
uint_to_bits(z_ebp, buf1);
|
|
uint_to_bits(z_esp, buf2);
|
|
VG_(message)(Vg_DebugMsg, "ebp %s esp %s\n", buf1, buf2);
|
|
}
|
|
|
|
|
|
/* For debugging only. Scan the address space and touch all allegedly
|
|
addressible words. Useful for establishing where Valgrind's idea of
|
|
addressibility has diverged from what the kernel believes. */
|
|
|
|
static
|
|
void zzzmemscan_notify_word ( Addr a, UInt w )
|
|
{
|
|
}
|
|
|
|
void zzzmemscan ( void )
|
|
{
|
|
Int n_notifies
|
|
= VG_(scan_all_valid_memory)( zzzmemscan_notify_word );
|
|
VG_(printf)("zzzmemscan: n_bytes = %d\n", 4 * n_notifies );
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
static Int zzz = 0;
|
|
|
|
void show_bb ( Addr eip_next )
|
|
{
|
|
VG_(printf)("[%4d] ", zzz);
|
|
vg_show_reg_tags( &VG_(m_shadow );
|
|
VG_(translate) ( eip_next, NULL, NULL, NULL );
|
|
}
|
|
#endif /* 0 */
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Command line args ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
Bool MC_(clo_avoid_strlen_errors) = True;
|
|
Bool MC_(clo_cleanup) = True;
|
|
|
|
Bool SK_(process_cmd_line_option)(Char* arg)
|
|
{
|
|
VG_BOOL_CLO("--avoid-strlen-errors", MC_(clo_avoid_strlen_errors))
|
|
else VG_BOOL_CLO("--cleanup", MC_(clo_cleanup))
|
|
else
|
|
return MAC_(process_common_cmd_line_option)(arg);
|
|
|
|
return True;
|
|
}
|
|
|
|
void SK_(print_usage)(void)
|
|
{
|
|
MAC_(print_common_usage)();
|
|
VG_(printf)(
|
|
" --avoid-strlen-errors=no|yes suppress errs from inlined strlen [yes]\n"
|
|
);
|
|
}
|
|
|
|
void SK_(print_debug_usage)(void)
|
|
{
|
|
MAC_(print_common_debug_usage)();
|
|
VG_(printf)(
|
|
" --cleanup=no|yes improve after instrumentation? [yes]\n"
|
|
);
|
|
}
|
|
|
|
|
|
/*------------------------------------------------------------*/
|
|
/*--- Setup ---*/
|
|
/*------------------------------------------------------------*/
|
|
|
|
void SK_(pre_clo_init)(void)
|
|
{
|
|
VG_(details_name) ("Memcheck");
|
|
VG_(details_version) (NULL);
|
|
VG_(details_description) ("a memory error detector");
|
|
VG_(details_copyright_author)(
|
|
"Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward.");
|
|
VG_(details_bug_reports_to) (VG_BUGS_TO);
|
|
VG_(details_avg_translation_sizeB) ( 228 );
|
|
|
|
VG_(needs_core_errors) ();
|
|
VG_(needs_skin_errors) ();
|
|
VG_(needs_libc_freeres) ();
|
|
VG_(needs_shadow_regs) ();
|
|
VG_(needs_command_line_options)();
|
|
VG_(needs_client_requests) ();
|
|
VG_(needs_extended_UCode) ();
|
|
VG_(needs_syscall_wrapper) ();
|
|
VG_(needs_sanity_checks) ();
|
|
VG_(needs_shadow_memory) ();
|
|
|
|
MAC_( new_mem_heap) = & mc_new_mem_heap;
|
|
MAC_( ban_mem_heap) = & MC_(make_noaccess);
|
|
MAC_(copy_mem_heap) = & mc_copy_address_range_state;
|
|
MAC_( die_mem_heap) = & MC_(make_noaccess);
|
|
MAC_(check_noaccess) = & MC_(check_noaccess);
|
|
|
|
VG_(init_new_mem_startup) ( & mc_new_mem_startup );
|
|
VG_(init_new_mem_stack_signal) ( & MC_(make_writable) );
|
|
VG_(init_new_mem_brk) ( & MC_(make_writable) );
|
|
VG_(init_new_mem_mmap) ( & mc_set_perms );
|
|
|
|
VG_(init_copy_mem_remap) ( & mc_copy_address_range_state );
|
|
VG_(init_change_mem_mprotect) ( & mc_set_perms );
|
|
|
|
VG_(init_die_mem_stack_signal) ( & MC_(make_noaccess) );
|
|
VG_(init_die_mem_brk) ( & MC_(make_noaccess) );
|
|
VG_(init_die_mem_munmap) ( & MC_(make_noaccess) );
|
|
|
|
VG_(init_new_mem_stack_4) ( & MAC_(new_mem_stack_4) );
|
|
VG_(init_new_mem_stack_8) ( & MAC_(new_mem_stack_8) );
|
|
VG_(init_new_mem_stack_12) ( & MAC_(new_mem_stack_12) );
|
|
VG_(init_new_mem_stack_16) ( & MAC_(new_mem_stack_16) );
|
|
VG_(init_new_mem_stack_32) ( & MAC_(new_mem_stack_32) );
|
|
VG_(init_new_mem_stack) ( & MAC_(new_mem_stack) );
|
|
|
|
VG_(init_die_mem_stack_4) ( & MAC_(die_mem_stack_4) );
|
|
VG_(init_die_mem_stack_8) ( & MAC_(die_mem_stack_8) );
|
|
VG_(init_die_mem_stack_12) ( & MAC_(die_mem_stack_12) );
|
|
VG_(init_die_mem_stack_16) ( & MAC_(die_mem_stack_16) );
|
|
VG_(init_die_mem_stack_32) ( & MAC_(die_mem_stack_32) );
|
|
VG_(init_die_mem_stack) ( & MAC_(die_mem_stack) );
|
|
|
|
VG_(init_ban_mem_stack) ( & MC_(make_noaccess) );
|
|
|
|
VG_(init_pre_mem_read) ( & mc_check_is_readable );
|
|
VG_(init_pre_mem_read_asciiz) ( & mc_check_is_readable_asciiz );
|
|
VG_(init_pre_mem_write) ( & mc_check_is_writable );
|
|
VG_(init_post_mem_write) ( & MC_(make_readable) );
|
|
|
|
VG_(init_post_regs_write_init) ( & mc_post_regs_write_init );
|
|
VG_(init_post_reg_write_syscall_return) ( & mc_post_reg_write );
|
|
VG_(init_post_reg_write_deliver_signal) ( & mc_post_reg_write );
|
|
VG_(init_post_reg_write_pthread_return) ( & mc_post_reg_write );
|
|
VG_(init_post_reg_write_clientreq_return) ( & mc_post_reg_write );
|
|
VG_(init_post_reg_write_clientcall_return) ( & mc_post_reg_write_clientcall );
|
|
|
|
/* Three compact slots taken up by stack memory helpers */
|
|
VG_(register_compact_helper)((Addr) & MC_(helper_value_check4_fail));
|
|
VG_(register_compact_helper)((Addr) & MC_(helper_value_check0_fail));
|
|
VG_(register_compact_helper)((Addr) & MC_(helper_value_check2_fail));
|
|
VG_(register_compact_helper)((Addr) & MC_(helperc_STOREV4));
|
|
VG_(register_compact_helper)((Addr) & MC_(helperc_LOADV4));
|
|
|
|
/* These two made non-compact because 2-byte transactions are rare. */
|
|
VG_(register_noncompact_helper)((Addr) & MC_(helperc_STOREV2));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(helperc_STOREV1));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(helperc_LOADV2));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(helperc_LOADV1));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(fpu_write_check));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(fpu_read_check));
|
|
VG_(register_noncompact_helper)((Addr) & MC_(helper_value_check1_fail));
|
|
|
|
VGP_(register_profile_event) ( VgpSetMem, "set-mem-perms" );
|
|
VGP_(register_profile_event) ( VgpCheckMem, "check-mem-perms" );
|
|
VGP_(register_profile_event) ( VgpESPAdj, "adjust-ESP" );
|
|
|
|
/* Additional block description for VG_(describe_addr)() */
|
|
MAC_(describe_addr_supp) = MC_(client_perm_maybe_describe);
|
|
|
|
init_shadow_memory();
|
|
MAC_(common_pre_clo_init)();
|
|
}
|
|
|
|
void SK_(post_clo_init) ( void )
|
|
{
|
|
}
|
|
|
|
void SK_(fini) ( Int exitcode )
|
|
{
|
|
MAC_(common_fini)( MC_(detect_memory_leaks) );
|
|
|
|
if (0) {
|
|
VG_(message)(Vg_DebugMsg,
|
|
"------ Valgrind's client block stats follow ---------------" );
|
|
MC_(show_client_block_stats)();
|
|
}
|
|
}
|
|
|
|
VG_DETERMINE_INTERFACE_VERSION(SK_(pre_clo_init), 9./8)
|
|
|
|
/*--------------------------------------------------------------------*/
|
|
/*--- end mc_main.c ---*/
|
|
/*--------------------------------------------------------------------*/
|