mirror of
https://github.com/Zenithsiz/ftmemsim-valgrind.git
synced 2026-02-17 08:04:36 +00:00
to support profiling. It is the responsibility of front ends (toIR.c) to generate these. For each instruction, the first IR stmt emitted should be an IMark, stating the guest address and length of the guest instruction represented by the IR that follows. All IR stmts following the IMark but before the next IMark are then assumed to 'belong to' the guest insn described by the first IMark. IMarks do not denote executable code and can be ignored at any point in the proceedings; they are an optional addition which help profiling-annotators to navigate the IR stmt stream. This commit adds IR level infrastructure for IMarks and IMark generation in the x86 front end. The amd64 and ppc32 front end are not yet done. git-svn-id: svn://svn.valgrind.org/vex/trunk@1046
3493 lines
121 KiB
C
3493 lines
121 KiB
C
|
|
/*---------------------------------------------------------------*/
|
|
/*--- ---*/
|
|
/*--- This file (host-x86/isel.c) is ---*/
|
|
/*--- Copyright (c) 2004 OpenWorks LLP. All rights reserved. ---*/
|
|
/*--- ---*/
|
|
/*---------------------------------------------------------------*/
|
|
|
|
/*
|
|
This file is part of LibVEX, a library for dynamic binary
|
|
instrumentation and translation.
|
|
|
|
Copyright (C) 2004 OpenWorks, LLP.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; Version 2 dated June 1991 of the
|
|
license.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, or liability
|
|
for damages. See the GNU General Public License for more details.
|
|
|
|
Neither the names of the U.S. Department of Energy nor the
|
|
University of California nor the names of its contributors may be
|
|
used to endorse or promote products derived from this software
|
|
without prior written permission.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
USA.
|
|
*/
|
|
|
|
#include "libvex_basictypes.h"
|
|
#include "libvex_ir.h"
|
|
#include "libvex.h"
|
|
|
|
#include "ir/irmatch.h"
|
|
#include "main/vex_util.h"
|
|
#include "main/vex_globals.h"
|
|
#include "host-generic/h_generic_regs.h"
|
|
#include "host-generic/h_generic_simd64.h"
|
|
#include "host-x86/hdefs.h"
|
|
|
|
/* TODO 4 Feb 2005:
|
|
|
|
-- Fill in load-case in iselIntExpr_RMI
|
|
|
|
-- preserve xmm registers across function calls (by declaring them
|
|
as trashed by call insns)
|
|
|
|
-- preserve x87 ST stack discipline across function calls. Sigh.
|
|
|
|
-- Check doHelperCall: if a call is conditional, we cannot safely
|
|
compute any regparm args directly to registers. Hence, the
|
|
fast-regparm marshalling should be restricted to unconditional
|
|
calls only.
|
|
*/
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- x87 control word stuff ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Vex-generated code expects to run with the FPU set as follows: all
|
|
exceptions masked, round-to-nearest, precision = 53 bits. This
|
|
corresponds to a FPU control word value of 0x027F.
|
|
|
|
Similarly the SSE control word (%mxcsr) should be 0x1F80.
|
|
|
|
%fpucw and %mxcsr should have these values on entry to
|
|
Vex-generated code, and should those values should be
|
|
unchanged at exit.
|
|
*/
|
|
|
|
#define DEFAULT_FPUCW 0x027F
|
|
|
|
/* debugging only, do not use */
|
|
/* define DEFAULT_FPUCW 0x037F */
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- misc helpers ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* These are duplicated in guest-x86/toIR.c */
|
|
static IRExpr* unop ( IROp op, IRExpr* a )
|
|
{
|
|
return IRExpr_Unop(op, a);
|
|
}
|
|
|
|
static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 )
|
|
{
|
|
return IRExpr_Binop(op, a1, a2);
|
|
}
|
|
|
|
static IRExpr* mkU64 ( ULong i )
|
|
{
|
|
return IRExpr_Const(IRConst_U64(i));
|
|
}
|
|
|
|
static IRExpr* mkU32 ( UInt i )
|
|
{
|
|
return IRExpr_Const(IRConst_U32(i));
|
|
}
|
|
|
|
static IRExpr* bind ( Int binder )
|
|
{
|
|
return IRExpr_Binder(binder);
|
|
}
|
|
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISelEnv ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* This carries around:
|
|
|
|
- A mapping from IRTemp to IRType, giving the type of any IRTemp we
|
|
might encounter. This is computed before insn selection starts,
|
|
and does not change.
|
|
|
|
- A mapping from IRTemp to HReg. This tells the insn selector
|
|
which virtual register(s) are associated with each IRTemp
|
|
temporary. This is computed before insn selection starts, and
|
|
does not change. We expect this mapping to map precisely the
|
|
same set of IRTemps as the type mapping does.
|
|
|
|
- vregmap holds the primary register for the IRTemp.
|
|
- vregmapHI is only used for 64-bit integer-typed
|
|
IRTemps. It holds the identity of a second
|
|
32-bit virtual HReg, which holds the high half
|
|
of the value.
|
|
|
|
- The code array, that is, the insns selected so far.
|
|
|
|
- A counter, for generating new virtual registers.
|
|
|
|
- The host subarchitecture we are selecting insns for.
|
|
This is set at the start and does not change.
|
|
|
|
Note, this is all host-independent. */
|
|
|
|
typedef
|
|
struct {
|
|
IRTypeEnv* type_env;
|
|
|
|
HReg* vregmap;
|
|
HReg* vregmapHI;
|
|
Int n_vregmap;
|
|
|
|
HInstrArray* code;
|
|
|
|
Int vreg_ctr;
|
|
|
|
VexSubArch subarch;
|
|
}
|
|
ISelEnv;
|
|
|
|
|
|
static HReg lookupIRTemp ( ISelEnv* env, IRTemp tmp )
|
|
{
|
|
vassert(tmp >= 0);
|
|
vassert(tmp < env->n_vregmap);
|
|
return env->vregmap[tmp];
|
|
}
|
|
|
|
static void lookupIRTemp64 ( HReg* vrHI, HReg* vrLO, ISelEnv* env, IRTemp tmp )
|
|
{
|
|
vassert(tmp >= 0);
|
|
vassert(tmp < env->n_vregmap);
|
|
vassert(env->vregmapHI[tmp] != INVALID_HREG);
|
|
*vrLO = env->vregmap[tmp];
|
|
*vrHI = env->vregmapHI[tmp];
|
|
}
|
|
|
|
static void addInstr ( ISelEnv* env, X86Instr* instr )
|
|
{
|
|
addHInstr(env->code, instr);
|
|
if (vex_traceflags & VEX_TRACE_VCODE) {
|
|
ppX86Instr(instr);
|
|
vex_printf("\n");
|
|
}
|
|
}
|
|
|
|
static HReg newVRegI ( ISelEnv* env )
|
|
{
|
|
HReg reg = mkHReg(env->vreg_ctr, HRcInt32, True/*virtual reg*/);
|
|
env->vreg_ctr++;
|
|
return reg;
|
|
}
|
|
|
|
static HReg newVRegF ( ISelEnv* env )
|
|
{
|
|
HReg reg = mkHReg(env->vreg_ctr, HRcFlt64, True/*virtual reg*/);
|
|
env->vreg_ctr++;
|
|
return reg;
|
|
}
|
|
|
|
static HReg newVRegV ( ISelEnv* env )
|
|
{
|
|
HReg reg = mkHReg(env->vreg_ctr, HRcVec128, True/*virtual reg*/);
|
|
env->vreg_ctr++;
|
|
return reg;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Forward declarations ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* These are organised as iselXXX and iselXXX_wrk pairs. The
|
|
iselXXX_wrk do the real work, but are not to be called directly.
|
|
For each XXX, iselXXX calls its iselXXX_wrk counterpart, then
|
|
checks that all returned registers are virtual. You should not
|
|
call the _wrk version directly.
|
|
*/
|
|
static X86RMI* iselIntExpr_RMI_wrk ( ISelEnv* env, IRExpr* e );
|
|
static X86RMI* iselIntExpr_RMI ( ISelEnv* env, IRExpr* e );
|
|
|
|
static X86RI* iselIntExpr_RI_wrk ( ISelEnv* env, IRExpr* e );
|
|
static X86RI* iselIntExpr_RI ( ISelEnv* env, IRExpr* e );
|
|
|
|
static X86RM* iselIntExpr_RM_wrk ( ISelEnv* env, IRExpr* e );
|
|
static X86RM* iselIntExpr_RM ( ISelEnv* env, IRExpr* e );
|
|
|
|
static HReg iselIntExpr_R_wrk ( ISelEnv* env, IRExpr* e );
|
|
static HReg iselIntExpr_R ( ISelEnv* env, IRExpr* e );
|
|
|
|
static X86AMode* iselIntExpr_AMode_wrk ( ISelEnv* env, IRExpr* e );
|
|
static X86AMode* iselIntExpr_AMode ( ISelEnv* env, IRExpr* e );
|
|
|
|
static void iselInt64Expr_wrk ( HReg* rHi, HReg* rLo,
|
|
ISelEnv* env, IRExpr* e );
|
|
static void iselInt64Expr ( HReg* rHi, HReg* rLo,
|
|
ISelEnv* env, IRExpr* e );
|
|
|
|
static X86CondCode iselCondCode_wrk ( ISelEnv* env, IRExpr* e );
|
|
static X86CondCode iselCondCode ( ISelEnv* env, IRExpr* e );
|
|
|
|
static HReg iselDblExpr_wrk ( ISelEnv* env, IRExpr* e );
|
|
static HReg iselDblExpr ( ISelEnv* env, IRExpr* e );
|
|
|
|
static HReg iselFltExpr_wrk ( ISelEnv* env, IRExpr* e );
|
|
static HReg iselFltExpr ( ISelEnv* env, IRExpr* e );
|
|
|
|
static HReg iselVecExpr_wrk ( ISelEnv* env, IRExpr* e );
|
|
static HReg iselVecExpr ( ISelEnv* env, IRExpr* e );
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Misc helpers ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Is this a 32-bit zero expression? */
|
|
|
|
static Bool isZero32 ( IRExpr* e )
|
|
{
|
|
return e->tag == Iex_Const
|
|
&& e->Iex.Const.con->tag == Ico_U32
|
|
&& e->Iex.Const.con->Ico.U32 == 0;
|
|
}
|
|
|
|
/* Make a int reg-reg move. */
|
|
|
|
static X86Instr* mk_iMOVsd_RR ( HReg src, HReg dst )
|
|
{
|
|
vassert(hregClass(src) == HRcInt32);
|
|
vassert(hregClass(dst) == HRcInt32);
|
|
return X86Instr_Alu32R(Xalu_MOV, X86RMI_Reg(src), dst);
|
|
}
|
|
|
|
|
|
/* Make a vector reg-reg move. */
|
|
|
|
static X86Instr* mk_vMOVsd_RR ( HReg src, HReg dst )
|
|
{
|
|
vassert(hregClass(src) == HRcVec128);
|
|
vassert(hregClass(dst) == HRcVec128);
|
|
return X86Instr_SseReRg(Xsse_MOV, src, dst);
|
|
}
|
|
|
|
/* Advance/retreat %esp by n. */
|
|
|
|
static void add_to_esp ( ISelEnv* env, Int n )
|
|
{
|
|
vassert(n > 0 && n < 256 && (n%4) == 0);
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(n), hregX86_ESP()));
|
|
}
|
|
|
|
static void sub_from_esp ( ISelEnv* env, Int n )
|
|
{
|
|
vassert(n > 0 && n < 256 && (n%4) == 0);
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_SUB, X86RMI_Imm(n), hregX86_ESP()));
|
|
}
|
|
|
|
|
|
/* Given an amode, return one which references 4 bytes further
|
|
along. */
|
|
|
|
static X86AMode* advance4 ( X86AMode* am )
|
|
{
|
|
X86AMode* am4 = dopyX86AMode(am);
|
|
switch (am4->tag) {
|
|
case Xam_IRRS:
|
|
am4->Xam.IRRS.imm += 4; break;
|
|
case Xam_IR:
|
|
am4->Xam.IR.imm += 4; break;
|
|
default:
|
|
vpanic("advance4(x86,host)");
|
|
}
|
|
return am4;
|
|
}
|
|
|
|
|
|
/* Push an arg onto the host stack, in preparation for a call to a
|
|
helper function of some kind. Returns the number of 32-bit words
|
|
pushed. */
|
|
|
|
static Int pushArg ( ISelEnv* env, IRExpr* arg )
|
|
{
|
|
IRType arg_ty = typeOfIRExpr(env->type_env, arg);
|
|
if (arg_ty == Ity_I32) {
|
|
addInstr(env, X86Instr_Push(iselIntExpr_RMI(env, arg)));
|
|
return 1;
|
|
} else
|
|
if (arg_ty == Ity_I64) {
|
|
HReg rHi, rLo;
|
|
iselInt64Expr(&rHi, &rLo, env, arg);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
|
|
return 2;
|
|
}
|
|
ppIRExpr(arg);
|
|
vpanic("pushArg(x86): can't handle arg of this type");
|
|
}
|
|
|
|
|
|
/* Complete the call to a helper function, by calling the
|
|
helper and clearing the args off the stack. */
|
|
|
|
static
|
|
void callHelperAndClearArgs ( ISelEnv* env, X86CondCode cc,
|
|
IRCallee* cee, Int n_arg_ws )
|
|
{
|
|
/* Complication. Need to decide which reg to use as the fn address
|
|
pointer, in a way that doesn't trash regparm-passed
|
|
parameters. */
|
|
vassert(sizeof(void*) == 4);
|
|
|
|
addInstr(env, X86Instr_Call( cc, (UInt)Ptr_to_ULong(cee->addr),
|
|
cee->regparms));
|
|
if (n_arg_ws > 0)
|
|
add_to_esp(env, 4*n_arg_ws);
|
|
}
|
|
|
|
|
|
/* Used only in doHelperCall. See big comment in doHelperCall re
|
|
handling of regparm args. This function figures out whether
|
|
evaluation of an expression might require use of a fixed register.
|
|
If in doubt return True (safe but suboptimal).
|
|
*/
|
|
static
|
|
Bool mightRequireFixedRegs ( IRExpr* e )
|
|
{
|
|
switch (e->tag) {
|
|
case Iex_Tmp: case Iex_Const: case Iex_Get:
|
|
return False;
|
|
default:
|
|
return True;
|
|
}
|
|
}
|
|
|
|
|
|
/* Do a complete function call. guard is a Ity_Bit expression
|
|
indicating whether or not the call happens. If guard==NULL, the
|
|
call is unconditional. */
|
|
|
|
static
|
|
void doHelperCall ( ISelEnv* env,
|
|
Bool passBBP,
|
|
IRExpr* guard, IRCallee* cee, IRExpr** args )
|
|
{
|
|
X86CondCode cc;
|
|
HReg argregs[3];
|
|
HReg tmpregs[3];
|
|
Bool danger;
|
|
Int not_done_yet, n_args, n_arg_ws, stack_limit,
|
|
i, argreg, argregX;
|
|
|
|
/* Marshal args for a call, do the call, and clear the stack.
|
|
Complexities to consider:
|
|
|
|
* if passBBP is True, %ebp (the baseblock pointer) is to be
|
|
passed as the first arg.
|
|
|
|
* If the callee claims regparmness of 1, 2 or 3, we must pass the
|
|
first 1, 2 or 3 args in registers (EAX, EDX, and ECX
|
|
respectively). To keep things relatively simple, only args of
|
|
type I32 may be passed as regparms -- just bomb out if anything
|
|
else turns up. Clearly this depends on the front ends not
|
|
trying to pass any other types as regparms.
|
|
*/
|
|
|
|
/* 16 Nov 2004: the regparm handling is complicated by the
|
|
following problem.
|
|
|
|
Consider a call two a function with two regparm parameters:
|
|
f(e1,e2). We need to compute e1 into %eax and e2 into %edx.
|
|
Suppose code is first generated to compute e1 into %eax. Then,
|
|
code is generated to compute e2 into %edx. Unfortunately, if
|
|
the latter code sequence uses %eax, it will trash the value of
|
|
e1 computed by the former sequence. This could happen if (for
|
|
example) e2 itself involved a function call. In the code below,
|
|
args are evaluated right-to-left, not left-to-right, but the
|
|
principle and the problem are the same.
|
|
|
|
One solution is to compute all regparm-bound args into vregs
|
|
first, and once they are all done, move them to the relevant
|
|
real regs. This always gives correct code, but it also gives
|
|
a bunch of vreg-to-rreg moves which are usually redundant but
|
|
are hard for the register allocator to get rid of.
|
|
|
|
A compromise is to first examine all regparm'd argument
|
|
expressions. If they are all so simple that it is clear
|
|
they will be evaluated without use of any fixed registers,
|
|
use the old compute-directly-to-fixed-target scheme. If not,
|
|
be safe and use the via-vregs scheme.
|
|
|
|
Note this requires being able to examine an expression and
|
|
determine whether or not evaluation of it might use a fixed
|
|
register. That requires knowledge of how the rest of this
|
|
insn selector works. Currently just the following 3 are
|
|
regarded as safe -- hopefully they cover the majority of
|
|
arguments in practice: IRExpr_Tmp IRExpr_Const IRExpr_Get.
|
|
*/
|
|
vassert(cee->regparms >= 0 && cee->regparms <= 3);
|
|
|
|
n_args = n_arg_ws = 0;
|
|
while (args[n_args]) n_args++;
|
|
|
|
not_done_yet = n_args;
|
|
if (passBBP)
|
|
not_done_yet++;
|
|
|
|
stack_limit = cee->regparms;
|
|
if (cee->regparms > 0 && passBBP) stack_limit--;
|
|
|
|
/* ------ BEGIN marshall all arguments ------ */
|
|
|
|
/* Push (R to L) the stack-passed args, [n_args-1 .. stack_limit] */
|
|
for (i = n_args-1; i >= stack_limit; i--) {
|
|
n_arg_ws += pushArg(env, args[i]);
|
|
not_done_yet--;
|
|
}
|
|
|
|
/* args [stack_limit-1 .. 0] and possibly %ebp are to be passed in
|
|
registers. */
|
|
|
|
if (cee->regparms > 0) {
|
|
|
|
/* ------ BEGIN deal with regparms ------ */
|
|
|
|
/* deal with regparms, not forgetting %ebp if needed. */
|
|
argregs[0] = hregX86_EAX();
|
|
argregs[1] = hregX86_EDX();
|
|
argregs[2] = hregX86_ECX();
|
|
tmpregs[0] = tmpregs[1] = tmpregs[2] = INVALID_HREG;
|
|
|
|
argreg = cee->regparms;
|
|
|
|
/* In keeping with big comment above, detect potential danger
|
|
and use the via-vregs scheme if needed. */
|
|
danger = False;
|
|
for (i = stack_limit-1; i >= 0; i--) {
|
|
if (mightRequireFixedRegs(args[i])) {
|
|
danger = True;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (danger) {
|
|
|
|
/* Move via temporaries */
|
|
argregX = argreg;
|
|
for (i = stack_limit-1; i >= 0; i--) {
|
|
|
|
if (0) {
|
|
vex_printf("x86 host: register param is complex: ");
|
|
ppIRExpr(args[i]);
|
|
vex_printf("\n");
|
|
}
|
|
|
|
argreg--;
|
|
vassert(argreg >= 0);
|
|
vassert(typeOfIRExpr(env->type_env, args[i]) == Ity_I32);
|
|
tmpregs[argreg] = iselIntExpr_R(env, args[i]);
|
|
not_done_yet--;
|
|
}
|
|
for (i = stack_limit-1; i >= 0; i--) {
|
|
argregX--;
|
|
vassert(argregX >= 0);
|
|
addInstr( env, mk_iMOVsd_RR( tmpregs[argregX], argregs[argregX] ) );
|
|
}
|
|
|
|
} else {
|
|
/* It's safe to compute all regparm args directly into their
|
|
target registers. */
|
|
for (i = stack_limit-1; i >= 0; i--) {
|
|
argreg--;
|
|
vassert(argreg >= 0);
|
|
vassert(typeOfIRExpr(env->type_env, args[i]) == Ity_I32);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
|
|
iselIntExpr_RMI(env, args[i]),
|
|
argregs[argreg]));
|
|
not_done_yet--;
|
|
}
|
|
|
|
}
|
|
|
|
/* Not forgetting %ebp if needed. */
|
|
if (passBBP) {
|
|
vassert(argreg == 1);
|
|
addInstr(env, mk_iMOVsd_RR( hregX86_EBP(), argregs[0]));
|
|
not_done_yet--;
|
|
}
|
|
|
|
/* ------ END deal with regparms ------ */
|
|
|
|
} else {
|
|
|
|
/* No regparms. Heave %ebp on the stack if needed. */
|
|
if (passBBP) {
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(hregX86_EBP())));
|
|
n_arg_ws++;
|
|
not_done_yet--;
|
|
}
|
|
|
|
}
|
|
|
|
vassert(not_done_yet == 0);
|
|
|
|
/* ------ END marshall all arguments ------ */
|
|
|
|
/* Now we can compute the condition. We can't do it earlier
|
|
because the argument computations could trash the condition
|
|
codes. Be a bit clever to handle the common case where the
|
|
guard is 1:Bit. */
|
|
cc = Xcc_ALWAYS;
|
|
if (guard) {
|
|
if (guard->tag == Iex_Const
|
|
&& guard->Iex.Const.con->tag == Ico_U1
|
|
&& guard->Iex.Const.con->Ico.U1 == True) {
|
|
/* unconditional -- do nothing */
|
|
} else {
|
|
cc = iselCondCode( env, guard );
|
|
}
|
|
}
|
|
|
|
/* call the helper, and get the args off the stack afterwards. */
|
|
callHelperAndClearArgs( env, cc, cee, n_arg_ws );
|
|
}
|
|
|
|
|
|
/* Given a guest-state array descriptor, an index expression and a
|
|
bias, generate an X86AMode holding the relevant guest state
|
|
offset. */
|
|
|
|
static
|
|
X86AMode* genGuestArrayOffset ( ISelEnv* env, IRArray* descr,
|
|
IRExpr* off, Int bias )
|
|
{
|
|
HReg tmp, roff;
|
|
Int elemSz = sizeofIRType(descr->elemTy);
|
|
Int nElems = descr->nElems;
|
|
|
|
/* throw out any cases not generated by an x86 front end. In
|
|
theory there might be a day where we need to handle them -- if
|
|
we ever run non-x86-guest on x86 host. */
|
|
|
|
if (nElems != 8 || (elemSz != 1 && elemSz != 8))
|
|
vpanic("genGuestArrayOffset(x86 host)");
|
|
|
|
/* Compute off into a reg, %off. Then return:
|
|
|
|
movl %off, %tmp
|
|
addl $bias, %tmp (if bias != 0)
|
|
andl %tmp, 7
|
|
... base(%ebp, %tmp, shift) ...
|
|
*/
|
|
tmp = newVRegI(env);
|
|
roff = iselIntExpr_R(env, off);
|
|
addInstr(env, mk_iMOVsd_RR(roff, tmp));
|
|
if (bias != 0) {
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(bias), tmp));
|
|
}
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(7), tmp));
|
|
vassert(elemSz == 1 || elemSz == 8);
|
|
return
|
|
X86AMode_IRRS( descr->base, hregX86_EBP(), tmp,
|
|
elemSz==8 ? 3 : 0);
|
|
}
|
|
|
|
|
|
/* Mess with the FPU's rounding mode: set to the default rounding mode
|
|
(DEFAULT_FPUCW). */
|
|
static
|
|
void set_FPU_rounding_default ( ISelEnv* env )
|
|
{
|
|
/* pushl $DEFAULT_FPUCW
|
|
fldcw 0(%esp)
|
|
addl $4, %esp
|
|
*/
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(DEFAULT_FPUCW)));
|
|
addInstr(env, X86Instr_FpLdCW(zero_esp));
|
|
add_to_esp(env, 4);
|
|
}
|
|
|
|
|
|
/* Mess with the FPU's rounding mode: 'mode' is an I32-typed
|
|
expression denoting a value in the range 0 .. 3, indicating a round
|
|
mode encoded as per type IRRoundingMode. Set the x87 FPU to have
|
|
the same rounding.
|
|
*/
|
|
static
|
|
void set_FPU_rounding_mode ( ISelEnv* env, IRExpr* mode )
|
|
{
|
|
HReg rrm = iselIntExpr_R(env, mode);
|
|
HReg rrm2 = newVRegI(env);
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
|
|
/* movl %rrm, %rrm2
|
|
andl $3, %rrm2 -- shouldn't be needed; paranoia
|
|
shll $10, %rrm2
|
|
orl $DEFAULT_FPUCW, %rrm2
|
|
pushl %rrm2
|
|
fldcw 0(%esp)
|
|
addl $4, %esp
|
|
*/
|
|
addInstr(env, mk_iMOVsd_RR(rrm, rrm2));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(3), rrm2));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 10, rrm2));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Imm(DEFAULT_FPUCW), rrm2));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rrm2)));
|
|
addInstr(env, X86Instr_FpLdCW(zero_esp));
|
|
add_to_esp(env, 4);
|
|
}
|
|
|
|
|
|
/* Generate !src into a new vector register, and be sure that the code
|
|
is SSE1 compatible. Amazing that Intel doesn't offer a less crappy
|
|
way to do this.
|
|
*/
|
|
static HReg do_sse_Not128 ( ISelEnv* env, HReg src )
|
|
{
|
|
HReg dst = newVRegV(env);
|
|
/* Set dst to zero. Not strictly necessary, but the idea of doing
|
|
a FP comparison on whatever junk happens to be floating around
|
|
in it is just too scary. */
|
|
addInstr(env, X86Instr_SseReRg(Xsse_XOR, dst, dst));
|
|
/* And now make it all 1s ... */
|
|
addInstr(env, X86Instr_Sse32Fx4(Xsse_CMPEQF, dst, dst));
|
|
/* Finally, xor 'src' into it. */
|
|
addInstr(env, X86Instr_SseReRg(Xsse_XOR, src, dst));
|
|
return dst;
|
|
}
|
|
|
|
|
|
/* Round an x87 FPU value to 53-bit-mantissa precision, to be used
|
|
after most non-simple FPU operations (simple = +, -, *, / and
|
|
sqrt).
|
|
|
|
This could be done a lot more efficiently if needed, by loading
|
|
zero and adding it to the value to be rounded (fldz ; faddp?).
|
|
*/
|
|
static void roundToF64 ( ISelEnv* env, HReg reg )
|
|
{
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
sub_from_esp(env, 8);
|
|
addInstr(env, X86Instr_FpLdSt(False/*store*/, 8, reg, zero_esp));
|
|
addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, reg, zero_esp));
|
|
add_to_esp(env, 8);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Integer expressions (32/16/8 bit) ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Select insns for an integer-typed expression, and add them to the
|
|
code list. Return a reg holding the result. This reg will be a
|
|
virtual register. THE RETURNED REG MUST NOT BE MODIFIED. If you
|
|
want to modify it, ask for a new vreg, copy it in there, and modify
|
|
the copy. The register allocator will do its best to map both
|
|
vregs to the same real register, so the copies will often disappear
|
|
later in the game.
|
|
|
|
This should handle expressions of 32, 16 and 8-bit type. All
|
|
results are returned in a 32-bit register. For 16- and 8-bit
|
|
expressions, the upper 16/24 bits are arbitrary, so you should mask
|
|
or sign extend partial values if necessary.
|
|
*/
|
|
|
|
static HReg iselIntExpr_R ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
HReg r = iselIntExpr_R_wrk(env, e);
|
|
/* sanity checks ... */
|
|
# if 0
|
|
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
|
|
# endif
|
|
vassert(hregClass(r) == HRcInt32);
|
|
vassert(hregIsVirtual(r));
|
|
return r;
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static HReg iselIntExpr_R_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
MatchInfo mi;
|
|
DECLARE_PATTERN(p_32to1_then_1Uto8);
|
|
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
|
|
|
|
switch (e->tag) {
|
|
|
|
/* --------- TEMP --------- */
|
|
case Iex_Tmp: {
|
|
return lookupIRTemp(env, e->Iex.Tmp.tmp);
|
|
}
|
|
|
|
/* --------- LOAD --------- */
|
|
case Iex_LDle: {
|
|
HReg dst = newVRegI(env);
|
|
X86AMode* amode = iselIntExpr_AMode ( env, e->Iex.LDle.addr );
|
|
if (ty == Ity_I32) {
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
|
|
X86RMI_Mem(amode), dst) );
|
|
return dst;
|
|
}
|
|
if (ty == Ity_I16) {
|
|
addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
|
|
return dst;
|
|
}
|
|
if (ty == Ity_I8) {
|
|
addInstr(env, X86Instr_LoadEX(1,False,amode,dst));
|
|
return dst;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- BINARY OP --------- */
|
|
case Iex_Binop: {
|
|
X86AluOp aluOp;
|
|
X86ShiftOp shOp;
|
|
|
|
/* Pattern: Sub32(0,x) */
|
|
if (e->Iex.Binop.op == Iop_Sub32 && isZero32(e->Iex.Binop.arg1)) {
|
|
HReg dst = newVRegI(env);
|
|
HReg reg = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(reg,dst));
|
|
addInstr(env, X86Instr_Unary32(Xun_NEG,dst));
|
|
return dst;
|
|
}
|
|
|
|
/* Is it an addition or logical style op? */
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_Add8: case Iop_Add16: case Iop_Add32:
|
|
aluOp = Xalu_ADD; break;
|
|
case Iop_Sub8: case Iop_Sub16: case Iop_Sub32:
|
|
aluOp = Xalu_SUB; break;
|
|
case Iop_And8: case Iop_And16: case Iop_And32:
|
|
aluOp = Xalu_AND; break;
|
|
case Iop_Or8: case Iop_Or16: case Iop_Or32:
|
|
aluOp = Xalu_OR; break;
|
|
case Iop_Xor8: case Iop_Xor16: case Iop_Xor32:
|
|
aluOp = Xalu_XOR; break;
|
|
case Iop_Mul16: case Iop_Mul32:
|
|
aluOp = Xalu_MUL; break;
|
|
default:
|
|
aluOp = Xalu_INVALID; break;
|
|
}
|
|
/* For commutative ops we assume any literal
|
|
values are on the second operand. */
|
|
if (aluOp != Xalu_INVALID) {
|
|
HReg dst = newVRegI(env);
|
|
HReg reg = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(reg,dst));
|
|
addInstr(env, X86Instr_Alu32R(aluOp, rmi, dst));
|
|
return dst;
|
|
}
|
|
/* Could do better here; forcing the first arg into a reg
|
|
isn't always clever.
|
|
-- t70 = Xor32(And32(Xor32(LDle:I32(Add32(t41,0xFFFFFFA0:I32)),
|
|
LDle:I32(Add32(t41,0xFFFFFFA4:I32))),LDle:I32(Add32(
|
|
t41,0xFFFFFFA8:I32))),LDle:I32(Add32(t41,0xFFFFFFA0:I32)))
|
|
movl 0xFFFFFFA0(%vr41),%vr107
|
|
movl 0xFFFFFFA4(%vr41),%vr108
|
|
movl %vr107,%vr106
|
|
xorl %vr108,%vr106
|
|
movl 0xFFFFFFA8(%vr41),%vr109
|
|
movl %vr106,%vr105
|
|
andl %vr109,%vr105
|
|
movl 0xFFFFFFA0(%vr41),%vr110
|
|
movl %vr105,%vr104
|
|
xorl %vr110,%vr104
|
|
movl %vr104,%vr70
|
|
*/
|
|
|
|
/* Perhaps a shift op? */
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_Shl32: case Iop_Shl16: case Iop_Shl8:
|
|
shOp = Xsh_SHL; break;
|
|
case Iop_Shr32: case Iop_Shr16: case Iop_Shr8:
|
|
shOp = Xsh_SHR; break;
|
|
case Iop_Sar32: case Iop_Sar16: case Iop_Sar8:
|
|
shOp = Xsh_SAR; break;
|
|
default:
|
|
shOp = Xsh_INVALID; break;
|
|
}
|
|
if (shOp != Xsh_INVALID) {
|
|
HReg dst = newVRegI(env);
|
|
|
|
/* regL = the value to be shifted */
|
|
HReg regL = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(regL,dst));
|
|
|
|
/* Do any necessary widening for 16/8 bit operands */
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_Shr8:
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_AND, X86RMI_Imm(0xFF), dst));
|
|
break;
|
|
case Iop_Shr16:
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_AND, X86RMI_Imm(0xFFFF), dst));
|
|
break;
|
|
case Iop_Sar8:
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 24, dst));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, 24, dst));
|
|
break;
|
|
case Iop_Sar16:
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, dst));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, 16, dst));
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
/* Now consider the shift amount. If it's a literal, we
|
|
can do a much better job than the general case. */
|
|
if (e->Iex.Binop.arg2->tag == Iex_Const) {
|
|
/* assert that the IR is well-typed */
|
|
Int nshift;
|
|
vassert(e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8);
|
|
nshift = e->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
|
|
vassert(nshift >= 0);
|
|
if (nshift > 0)
|
|
/* Can't allow nshift==0 since that means %cl */
|
|
addInstr(env, X86Instr_Sh32( shOp, nshift, dst ));
|
|
} else {
|
|
/* General case; we have to force the amount into %cl. */
|
|
HReg regR = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(regR,hregX86_ECX()));
|
|
addInstr(env, X86Instr_Sh32(shOp, 0/* %cl */, dst));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
/* Handle misc other ops. */
|
|
if (e->Iex.Binop.op == Iop_8HLto16) {
|
|
HReg hi8 = newVRegI(env);
|
|
HReg lo8 = newVRegI(env);
|
|
HReg hi8s = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
HReg lo8s = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(hi8s, hi8));
|
|
addInstr(env, mk_iMOVsd_RR(lo8s, lo8));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 8, hi8));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFF), lo8));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo8), hi8));
|
|
return hi8;
|
|
}
|
|
|
|
if (e->Iex.Binop.op == Iop_16HLto32) {
|
|
HReg hi16 = newVRegI(env);
|
|
HReg lo16 = newVRegI(env);
|
|
HReg hi16s = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
HReg lo16s = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(hi16s, hi16));
|
|
addInstr(env, mk_iMOVsd_RR(lo16s, lo16));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 16, hi16));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0xFFFF), lo16));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_OR, X86RMI_Reg(lo16), hi16));
|
|
return hi16;
|
|
}
|
|
|
|
if (e->Iex.Binop.op == Iop_MullS16 || e->Iex.Binop.op == Iop_MullS8
|
|
|| e->Iex.Binop.op == Iop_MullU16 || e->Iex.Binop.op == Iop_MullU8) {
|
|
HReg a16 = newVRegI(env);
|
|
HReg b16 = newVRegI(env);
|
|
HReg a16s = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
HReg b16s = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
Int shift = (e->Iex.Binop.op == Iop_MullS8
|
|
|| e->Iex.Binop.op == Iop_MullU8)
|
|
? 24 : 16;
|
|
X86ShiftOp shr_op = (e->Iex.Binop.op == Iop_MullS8
|
|
|| e->Iex.Binop.op == Iop_MullS16)
|
|
? Xsh_SAR : Xsh_SHR;
|
|
|
|
addInstr(env, mk_iMOVsd_RR(a16s, a16));
|
|
addInstr(env, mk_iMOVsd_RR(b16s, b16));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, a16));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, shift, b16));
|
|
addInstr(env, X86Instr_Sh32(shr_op, shift, a16));
|
|
addInstr(env, X86Instr_Sh32(shr_op, shift, b16));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MUL, X86RMI_Reg(a16), b16));
|
|
return b16;
|
|
}
|
|
|
|
if (e->Iex.Binop.op == Iop_CmpF64) {
|
|
HReg fL = iselDblExpr(env, e->Iex.Binop.arg1);
|
|
HReg fR = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegI(env);
|
|
addInstr(env, X86Instr_FpCmp(fL,fR,dst));
|
|
/* shift this right 8 bits so as to conform to CmpF64
|
|
definition. */
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHR, 8, dst));
|
|
return dst;
|
|
}
|
|
|
|
if (e->Iex.Binop.op == Iop_F64toI32 || e->Iex.Binop.op == Iop_F64toI16) {
|
|
Int sz = e->Iex.Binop.op == Iop_F64toI16 ? 2 : 4;
|
|
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegI(env);
|
|
|
|
/* Used several times ... */
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
|
|
/* rf now holds the value to be converted, and rrm holds the
|
|
rounding mode value, encoded as per the IRRoundingMode
|
|
enum. The first thing to do is set the FPU's rounding
|
|
mode accordingly. */
|
|
|
|
/* Create a space for the format conversion. */
|
|
/* subl $4, %esp */
|
|
sub_from_esp(env, 4);
|
|
|
|
/* Set host rounding mode */
|
|
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
|
|
|
|
/* gistw/l %rf, 0(%esp) */
|
|
addInstr(env, X86Instr_FpLdStI(False/*store*/, sz, rf, zero_esp));
|
|
|
|
if (sz == 2) {
|
|
/* movzwl 0(%esp), %dst */
|
|
addInstr(env, X86Instr_LoadEX(2,False,zero_esp,dst));
|
|
} else {
|
|
/* movl 0(%esp), %dst */
|
|
vassert(sz == 4);
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_MOV, X86RMI_Mem(zero_esp), dst));
|
|
}
|
|
|
|
/* Restore default FPU rounding. */
|
|
set_FPU_rounding_default( env );
|
|
|
|
/* addl $4, %esp */
|
|
add_to_esp(env, 4);
|
|
return dst;
|
|
}
|
|
|
|
/* C3210 flags following FPU partial remainder (fprem), both
|
|
IEEE compliant (PREM1) and non-IEEE compliant (PREM). */
|
|
if (e->Iex.Binop.op == Iop_PRemC3210F64
|
|
|| e->Iex.Binop.op == Iop_PRem1C3210F64) {
|
|
HReg junk = newVRegF(env);
|
|
HReg dst = newVRegI(env);
|
|
HReg srcL = iselDblExpr(env, e->Iex.Binop.arg1);
|
|
HReg srcR = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_FpBinary(
|
|
e->Iex.Binop.op==Iop_PRemC3210F64
|
|
? Xfp_PREM : Xfp_PREM1,
|
|
srcL,srcR,junk
|
|
));
|
|
/* The previous pseudo-insn will have left the FPU's C3210
|
|
flags set correctly. So bag them. */
|
|
addInstr(env, X86Instr_FpStSW_AX());
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND, X86RMI_Imm(0x4700), dst));
|
|
return dst;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* --------- UNARY OP --------- */
|
|
case Iex_Unop: {
|
|
/* 1Uto8(32to1(expr32)) */
|
|
DEFINE_PATTERN(p_32to1_then_1Uto8,
|
|
unop(Iop_1Uto8,unop(Iop_32to1,bind(0))));
|
|
if (matchIRExpr(&mi,p_32to1_then_1Uto8,e)) {
|
|
IRExpr* expr32 = mi.bindee[0];
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, expr32);
|
|
addInstr(env, mk_iMOVsd_RR(src,dst) );
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND,
|
|
X86RMI_Imm(1), dst));
|
|
return dst;
|
|
}
|
|
|
|
/* 16Uto32(LDle(expr32)) */
|
|
{
|
|
DECLARE_PATTERN(p_LDle16_then_16Uto32);
|
|
DEFINE_PATTERN(p_LDle16_then_16Uto32,
|
|
unop(Iop_16Uto32,IRExpr_LDle(Ity_I16,bind(0))) );
|
|
if (matchIRExpr(&mi,p_LDle16_then_16Uto32,e)) {
|
|
HReg dst = newVRegI(env);
|
|
X86AMode* amode = iselIntExpr_AMode ( env, mi.bindee[0] );
|
|
addInstr(env, X86Instr_LoadEX(2,False,amode,dst));
|
|
return dst;
|
|
}
|
|
}
|
|
|
|
switch (e->Iex.Unop.op) {
|
|
case Iop_8Uto16:
|
|
case Iop_8Uto32:
|
|
case Iop_16Uto32: {
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
UInt mask = e->Iex.Unop.op==Iop_16Uto32 ? 0xFFFF : 0xFF;
|
|
addInstr(env, mk_iMOVsd_RR(src,dst) );
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND,
|
|
X86RMI_Imm(mask), dst));
|
|
return dst;
|
|
}
|
|
case Iop_8Sto16:
|
|
case Iop_8Sto32:
|
|
case Iop_16Sto32: {
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
UInt amt = e->Iex.Unop.op==Iop_16Sto32 ? 16 : 24;
|
|
addInstr(env, mk_iMOVsd_RR(src,dst) );
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, amt, dst));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, amt, dst));
|
|
return dst;
|
|
}
|
|
case Iop_Not8:
|
|
case Iop_Not16:
|
|
case Iop_Not32: {
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, mk_iMOVsd_RR(src,dst) );
|
|
addInstr(env, X86Instr_Unary32(Xun_NOT,dst));
|
|
return dst;
|
|
}
|
|
case Iop_64HIto32: {
|
|
HReg rHi, rLo;
|
|
iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
|
|
return rHi; /* and abandon rLo .. poor wee thing :-) */
|
|
}
|
|
case Iop_64to32: {
|
|
HReg rHi, rLo;
|
|
iselInt64Expr(&rHi,&rLo, env, e->Iex.Unop.arg);
|
|
return rLo; /* similar stupid comment to the above ... */
|
|
}
|
|
case Iop_16HIto8:
|
|
case Iop_32HIto16: {
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
Int shift = e->Iex.Unop.op == Iop_16HIto8 ? 8 : 16;
|
|
addInstr(env, mk_iMOVsd_RR(src,dst) );
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHR, shift, dst));
|
|
return dst;
|
|
}
|
|
case Iop_1Uto32:
|
|
case Iop_1Uto8: {
|
|
HReg dst = newVRegI(env);
|
|
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Set32(cond,dst));
|
|
return dst;
|
|
}
|
|
case Iop_1Sto8:
|
|
case Iop_1Sto16:
|
|
case Iop_1Sto32: {
|
|
/* could do better than this, but for now ... */
|
|
HReg dst = newVRegI(env);
|
|
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Set32(cond,dst));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, dst));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, dst));
|
|
return dst;
|
|
}
|
|
case Iop_Ctz32: {
|
|
/* Count trailing zeroes, implemented by x86 'bsfl' */
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Bsfr32(True,src,dst));
|
|
return dst;
|
|
}
|
|
case Iop_Clz32: {
|
|
/* Count leading zeroes. Do 'bsrl' to establish the index
|
|
of the highest set bit, and subtract that value from
|
|
31. */
|
|
HReg tmp = newVRegI(env);
|
|
HReg dst = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Bsfr32(False,src,tmp));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV,
|
|
X86RMI_Imm(31), dst));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_SUB,
|
|
X86RMI_Reg(tmp), dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_V128to32: {
|
|
HReg dst = newVRegI(env);
|
|
HReg vec = iselVecExpr(env, e->Iex.Unop.arg);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
sub_from_esp(env, 16);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, esp0));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(esp0), dst ));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_16to8:
|
|
case Iop_32to8:
|
|
case Iop_32to16:
|
|
/* These are no-ops. */
|
|
return iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- GET --------- */
|
|
case Iex_Get: {
|
|
if (ty == Ity_I32) {
|
|
HReg dst = newVRegI(env);
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_MOV,
|
|
X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
|
|
hregX86_EBP())),
|
|
dst));
|
|
return dst;
|
|
}
|
|
if (ty == Ity_I8 || ty == Ity_I16) {
|
|
HReg dst = newVRegI(env);
|
|
addInstr(env, X86Instr_LoadEX(
|
|
ty==Ity_I8 ? 1 : 2,
|
|
False,
|
|
X86AMode_IR(e->Iex.Get.offset,hregX86_EBP()),
|
|
dst));
|
|
return dst;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Iex_GetI: {
|
|
X86AMode* am
|
|
= genGuestArrayOffset(
|
|
env, e->Iex.GetI.descr,
|
|
e->Iex.GetI.ix, e->Iex.GetI.bias );
|
|
HReg dst = newVRegI(env);
|
|
if (ty == Ity_I8) {
|
|
addInstr(env, X86Instr_LoadEX( 1, False, am, dst ));
|
|
return dst;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- CCALL --------- */
|
|
case Iex_CCall: {
|
|
HReg dst = newVRegI(env);
|
|
vassert(ty == e->Iex.CCall.retty);
|
|
|
|
/* be very restrictive for now. Only 32/64-bit ints allowed
|
|
for args, and 32 bits for return type. */
|
|
if (e->Iex.CCall.retty != Ity_I32)
|
|
goto irreducible;
|
|
|
|
/* Marshal args, do the call, clear stack. */
|
|
doHelperCall( env, False, NULL, e->Iex.CCall.cee, e->Iex.CCall.args );
|
|
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), dst));
|
|
return dst;
|
|
}
|
|
|
|
/* --------- LITERAL --------- */
|
|
/* 32/16/8-bit literals */
|
|
case Iex_Const: {
|
|
X86RMI* rmi = iselIntExpr_RMI ( env, e );
|
|
HReg r = newVRegI(env);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, rmi, r));
|
|
return r;
|
|
}
|
|
|
|
/* --------- MULTIPLEX --------- */
|
|
case Iex_Mux0X: {
|
|
if ((ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8)
|
|
&& typeOfIRExpr(env->type_env,e->Iex.Mux0X.cond) == Ity_I8) {
|
|
HReg r8;
|
|
HReg rX = iselIntExpr_R(env, e->Iex.Mux0X.exprX);
|
|
X86RM* r0 = iselIntExpr_RM(env, e->Iex.Mux0X.expr0);
|
|
HReg dst = newVRegI(env);
|
|
addInstr(env, mk_iMOVsd_RR(rX,dst));
|
|
r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
|
|
addInstr(env, X86Instr_Test32(0xFF, r8));
|
|
addInstr(env, X86Instr_CMov32(Xcc_Z,r0,dst));
|
|
return dst;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
} /* switch (e->tag) */
|
|
|
|
/* We get here if no pattern matched. */
|
|
irreducible:
|
|
ppIRExpr(e);
|
|
vpanic("iselIntExpr_R: cannot reduce tree");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Integer expression auxiliaries ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* --------------------- AMODEs --------------------- */
|
|
|
|
/* Return an AMode which computes the value of the specified
|
|
expression, possibly also adding insns to the code list as a
|
|
result. The expression may only be a 32-bit one.
|
|
*/
|
|
|
|
static Bool sane_AMode ( X86AMode* am )
|
|
{
|
|
switch (am->tag) {
|
|
case Xam_IR:
|
|
return hregClass(am->Xam.IR.reg) == HRcInt32
|
|
&& (hregIsVirtual(am->Xam.IR.reg)
|
|
|| am->Xam.IR.reg == hregX86_EBP());
|
|
case Xam_IRRS:
|
|
return hregClass(am->Xam.IRRS.base) == HRcInt32
|
|
&& hregIsVirtual(am->Xam.IRRS.base)
|
|
&& hregClass(am->Xam.IRRS.index) == HRcInt32
|
|
&& hregIsVirtual(am->Xam.IRRS.index);
|
|
default:
|
|
vpanic("sane_AMode: unknown x86 amode tag");
|
|
}
|
|
}
|
|
|
|
static X86AMode* iselIntExpr_AMode ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
X86AMode* am = iselIntExpr_AMode_wrk(env, e);
|
|
vassert(sane_AMode(am));
|
|
return am;
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static X86AMode* iselIntExpr_AMode_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_I32);
|
|
|
|
/* Add32(expr1, Shl32(expr2, imm)) */
|
|
if (e->tag == Iex_Binop
|
|
&& e->Iex.Binop.op == Iop_Add32
|
|
&& e->Iex.Binop.arg2->tag == Iex_Binop
|
|
&& e->Iex.Binop.arg2->Iex.Binop.op == Iop_Shl32
|
|
&& e->Iex.Binop.arg2->Iex.Binop.arg2->tag == Iex_Const
|
|
&& e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U8) {
|
|
UInt shift = e->Iex.Binop.arg2->Iex.Binop.arg2->Iex.Const.con->Ico.U8;
|
|
if (shift == 1 || shift == 2 || shift == 3) {
|
|
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
HReg r2 = iselIntExpr_R(env, e->Iex.Binop.arg2->Iex.Binop.arg1 );
|
|
return X86AMode_IRRS(0, r1, r2, shift);
|
|
}
|
|
}
|
|
|
|
/* Add32(expr,i) */
|
|
if (e->tag == Iex_Binop
|
|
&& e->Iex.Binop.op == Iop_Add32
|
|
&& e->Iex.Binop.arg2->tag == Iex_Const
|
|
&& e->Iex.Binop.arg2->Iex.Const.con->tag == Ico_U32) {
|
|
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
return X86AMode_IR(e->Iex.Binop.arg2->Iex.Const.con->Ico.U32, r1);
|
|
}
|
|
|
|
/* Doesn't match anything in particular. Generate it into
|
|
a register and use that. */
|
|
{
|
|
HReg r1 = iselIntExpr_R(env, e);
|
|
return X86AMode_IR(0, r1);
|
|
}
|
|
}
|
|
|
|
|
|
/* --------------------- RMIs --------------------- */
|
|
|
|
/* Similarly, calculate an expression into an X86RMI operand. As with
|
|
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
|
|
|
|
static X86RMI* iselIntExpr_RMI ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
X86RMI* rmi = iselIntExpr_RMI_wrk(env, e);
|
|
/* sanity checks ... */
|
|
switch (rmi->tag) {
|
|
case Xrmi_Imm:
|
|
return rmi;
|
|
case Xrmi_Reg:
|
|
vassert(hregClass(rmi->Xrmi.Reg.reg) == HRcInt32);
|
|
vassert(hregIsVirtual(rmi->Xrmi.Reg.reg));
|
|
return rmi;
|
|
case Xrmi_Mem:
|
|
vassert(sane_AMode(rmi->Xrmi.Mem.am));
|
|
return rmi;
|
|
default:
|
|
vpanic("iselIntExpr_RMI: unknown x86 RMI tag");
|
|
}
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static X86RMI* iselIntExpr_RMI_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
|
|
|
|
/* special case: immediate */
|
|
if (e->tag == Iex_Const) {
|
|
UInt u;
|
|
switch (e->Iex.Const.con->tag) {
|
|
case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
|
|
case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
|
|
case Ico_U8: u = 0xFF & (e->Iex.Const.con->Ico.U8); break;
|
|
default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
|
|
}
|
|
return X86RMI_Imm(u);
|
|
}
|
|
|
|
/* special case: 32-bit GET */
|
|
if (e->tag == Iex_Get && ty == Ity_I32) {
|
|
return X86RMI_Mem(X86AMode_IR(e->Iex.Get.offset,
|
|
hregX86_EBP()));
|
|
}
|
|
|
|
/* special case: 32-bit load from memory */
|
|
if (e->tag == Iex_LDle && ty == Ity_I32) {
|
|
X86AMode* am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
|
|
return X86RMI_Mem(am);
|
|
}
|
|
|
|
/* default case: calculate into a register and return that */
|
|
{
|
|
HReg r = iselIntExpr_R ( env, e );
|
|
return X86RMI_Reg(r);
|
|
}
|
|
}
|
|
|
|
|
|
/* --------------------- RIs --------------------- */
|
|
|
|
/* Calculate an expression into an X86RI operand. As with
|
|
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
|
|
|
|
static X86RI* iselIntExpr_RI ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
X86RI* ri = iselIntExpr_RI_wrk(env, e);
|
|
/* sanity checks ... */
|
|
switch (ri->tag) {
|
|
case Xri_Imm:
|
|
return ri;
|
|
case Xrmi_Reg:
|
|
vassert(hregClass(ri->Xri.Reg.reg) == HRcInt32);
|
|
vassert(hregIsVirtual(ri->Xri.Reg.reg));
|
|
return ri;
|
|
default:
|
|
vpanic("iselIntExpr_RI: unknown x86 RI tag");
|
|
}
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static X86RI* iselIntExpr_RI_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
|
|
|
|
/* special case: immediate */
|
|
if (e->tag == Iex_Const) {
|
|
UInt u;
|
|
switch (e->Iex.Const.con->tag) {
|
|
case Ico_U32: u = e->Iex.Const.con->Ico.U32; break;
|
|
case Ico_U16: u = 0xFFFF & (e->Iex.Const.con->Ico.U16); break;
|
|
case Ico_U8: u = 0xFF & (e->Iex.Const.con->Ico.U8); break;
|
|
default: vpanic("iselIntExpr_RMI.Iex_Const(x86h)");
|
|
}
|
|
return X86RI_Imm(u);
|
|
}
|
|
|
|
/* default case: calculate into a register and return that */
|
|
{
|
|
HReg r = iselIntExpr_R ( env, e );
|
|
return X86RI_Reg(r);
|
|
}
|
|
}
|
|
|
|
|
|
/* --------------------- RMs --------------------- */
|
|
|
|
/* Similarly, calculate an expression into an X86RM operand. As with
|
|
iselIntExpr_R, the expression can have type 32, 16 or 8 bits. */
|
|
|
|
static X86RM* iselIntExpr_RM ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
X86RM* rm = iselIntExpr_RM_wrk(env, e);
|
|
/* sanity checks ... */
|
|
switch (rm->tag) {
|
|
case Xrm_Reg:
|
|
vassert(hregClass(rm->Xrm.Reg.reg) == HRcInt32);
|
|
vassert(hregIsVirtual(rm->Xrm.Reg.reg));
|
|
return rm;
|
|
case Xrm_Mem:
|
|
vassert(sane_AMode(rm->Xrm.Mem.am));
|
|
return rm;
|
|
default:
|
|
vpanic("iselIntExpr_RM: unknown x86 RM tag");
|
|
}
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static X86RM* iselIntExpr_RM_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8);
|
|
|
|
/* special case: 32-bit GET */
|
|
if (e->tag == Iex_Get && ty == Ity_I32) {
|
|
return X86RM_Mem(X86AMode_IR(e->Iex.Get.offset,
|
|
hregX86_EBP()));
|
|
}
|
|
|
|
/* special case: load from memory */
|
|
|
|
/* default case: calculate into a register and return that */
|
|
{
|
|
HReg r = iselIntExpr_R ( env, e );
|
|
return X86RM_Reg(r);
|
|
}
|
|
}
|
|
|
|
|
|
/* --------------------- CONDCODE --------------------- */
|
|
|
|
/* Generate code to evaluated a bit-typed expression, returning the
|
|
condition code which would correspond when the expression would
|
|
notionally have returned 1. */
|
|
|
|
static X86CondCode iselCondCode ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
/* Uh, there's nothing we can sanity check here, unfortunately. */
|
|
return iselCondCode_wrk(env,e);
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static X86CondCode iselCondCode_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
MatchInfo mi;
|
|
DECLARE_PATTERN(p_32to1);
|
|
DECLARE_PATTERN(p_1Uto32_then_32to1);
|
|
DECLARE_PATTERN(p_1Sto32_then_32to1);
|
|
|
|
vassert(e);
|
|
vassert(typeOfIRExpr(env->type_env,e) == Ity_I1);
|
|
|
|
/* Constant 1:Bit */
|
|
if (e->tag == Iex_Const && e->Iex.Const.con->Ico.U1 == True) {
|
|
HReg r;
|
|
vassert(e->Iex.Const.con->tag == Ico_U1);
|
|
r = newVRegI(env);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV,X86RMI_Imm(0),r));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(r),r));
|
|
return Xcc_Z;
|
|
}
|
|
|
|
/* Not1(...) */
|
|
if (e->tag == Iex_Unop && e->Iex.Unop.op == Iop_Not1) {
|
|
/* Generate code for the arg, and negate the test condition */
|
|
return 1 ^ iselCondCode(env, e->Iex.Unop.arg);
|
|
}
|
|
|
|
/* 32to1(1Uto32(expr1)) -- the casts are pointless, ignore them */
|
|
DEFINE_PATTERN(p_1Uto32_then_32to1,
|
|
unop(Iop_32to1,unop(Iop_1Uto32,bind(0))));
|
|
if (matchIRExpr(&mi,p_1Uto32_then_32to1,e)) {
|
|
IRExpr* expr1 = mi.bindee[0];
|
|
return iselCondCode(env, expr1);
|
|
}
|
|
|
|
/* 32to1(1Sto32(expr1)) -- the casts are pointless, ignore them */
|
|
DEFINE_PATTERN(p_1Sto32_then_32to1,
|
|
unop(Iop_32to1,unop(Iop_1Sto32,bind(0))));
|
|
if (matchIRExpr(&mi,p_1Sto32_then_32to1,e)) {
|
|
IRExpr* expr1 = mi.bindee[0];
|
|
return iselCondCode(env, expr1);
|
|
}
|
|
|
|
/* pattern: 32to1(expr32) */
|
|
DEFINE_PATTERN(p_32to1,
|
|
unop(Iop_32to1,bind(0))
|
|
);
|
|
if (matchIRExpr(&mi,p_32to1,e)) {
|
|
HReg r = iselIntExpr_R(env, mi.bindee[0]);
|
|
addInstr(env, X86Instr_Test32(1,r));
|
|
return Xcc_NZ;
|
|
}
|
|
|
|
/* CmpEQ8 / CmpNE8 */
|
|
if (e->tag == Iex_Binop
|
|
&& (e->Iex.Binop.op == Iop_CmpEQ8
|
|
|| e->Iex.Binop.op == Iop_CmpNE8)) {
|
|
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
HReg r = newVRegI(env);
|
|
addInstr(env, mk_iMOVsd_RR(r1,r));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(0xFF),r));
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_CmpEQ8: return Xcc_Z;
|
|
case Iop_CmpNE8: return Xcc_NZ;
|
|
default: vpanic("iselCondCode(x86): CmpXX8");
|
|
}
|
|
}
|
|
|
|
/* CmpEQ16 / CmpNE16 */
|
|
if (e->tag == Iex_Binop
|
|
&& (e->Iex.Binop.op == Iop_CmpEQ16
|
|
|| e->Iex.Binop.op == Iop_CmpNE16)) {
|
|
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
HReg r = newVRegI(env);
|
|
addInstr(env, mk_iMOVsd_RR(r1,r));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_XOR,rmi2,r));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(0xFFFF),r));
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_CmpEQ16: return Xcc_Z;
|
|
case Iop_CmpNE16: return Xcc_NZ;
|
|
default: vpanic("iselCondCode(x86): CmpXX16");
|
|
}
|
|
}
|
|
|
|
/* CmpNE32(1Sto32(b), 0) ==> b */
|
|
{
|
|
DECLARE_PATTERN(p_CmpNE32_1Sto32);
|
|
DEFINE_PATTERN(
|
|
p_CmpNE32_1Sto32,
|
|
binop(Iop_CmpNE32, unop(Iop_1Sto32,bind(0)), mkU32(0)));
|
|
if (matchIRExpr(&mi, p_CmpNE32_1Sto32, e)) {
|
|
return iselCondCode(env, mi.bindee[0]);
|
|
}
|
|
}
|
|
|
|
/* Cmp*32*(x,y) */
|
|
if (e->tag == Iex_Binop
|
|
&& (e->Iex.Binop.op == Iop_CmpEQ32
|
|
|| e->Iex.Binop.op == Iop_CmpNE32
|
|
|| e->Iex.Binop.op == Iop_CmpLT32S
|
|
|| e->Iex.Binop.op == Iop_CmpLT32U
|
|
|| e->Iex.Binop.op == Iop_CmpLE32S
|
|
|| e->Iex.Binop.op == Iop_CmpLE32U)) {
|
|
HReg r1 = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
X86RMI* rmi2 = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_CMP,rmi2,r1));
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_CmpEQ32: return Xcc_Z;
|
|
case Iop_CmpNE32: return Xcc_NZ;
|
|
case Iop_CmpLT32S: return Xcc_L;
|
|
case Iop_CmpLT32U: return Xcc_B;
|
|
case Iop_CmpLE32S: return Xcc_LE;
|
|
case Iop_CmpLE32U: return Xcc_BE;
|
|
default: vpanic("iselCondCode(x86): CmpXX32");
|
|
}
|
|
}
|
|
|
|
/* CmpNE64(1Sto64(b), 0) ==> b */
|
|
{
|
|
DECLARE_PATTERN(p_CmpNE64_1Sto64);
|
|
DEFINE_PATTERN(
|
|
p_CmpNE64_1Sto64,
|
|
binop(Iop_CmpNE64, unop(Iop_1Sto64,bind(0)), mkU64(0)));
|
|
if (matchIRExpr(&mi, p_CmpNE64_1Sto64, e)) {
|
|
return iselCondCode(env, mi.bindee[0]);
|
|
}
|
|
}
|
|
|
|
/* CmpNE64(x, 0) */
|
|
{
|
|
DECLARE_PATTERN(p_CmpNE64_x_zero);
|
|
DEFINE_PATTERN(
|
|
p_CmpNE64_x_zero,
|
|
binop(Iop_CmpNE64, bind(0), mkU64(0)) );
|
|
if (matchIRExpr(&mi, p_CmpNE64_x_zero, e)) {
|
|
HReg hi, lo;
|
|
IRExpr* x = mi.bindee[0];
|
|
HReg tmp = newVRegI(env);
|
|
iselInt64Expr( &hi, &lo, env, x );
|
|
addInstr(env, mk_iMOVsd_RR(hi, tmp));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(lo), tmp));
|
|
return Xcc_NZ;
|
|
}
|
|
}
|
|
|
|
/* CmpNE64 */
|
|
if (e->tag == Iex_Binop
|
|
&& e->Iex.Binop.op == Iop_CmpNE64) {
|
|
HReg hi1, hi2, lo1, lo2;
|
|
HReg tHi = newVRegI(env);
|
|
HReg tLo = newVRegI(env);
|
|
iselInt64Expr( &hi1, &lo1, env, e->Iex.Binop.arg1 );
|
|
iselInt64Expr( &hi2, &lo2, env, e->Iex.Binop.arg2 );
|
|
addInstr(env, mk_iMOVsd_RR(hi1, tHi));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(hi2), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(lo1, tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_XOR,X86RMI_Reg(lo2), tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_OR,X86RMI_Reg(tHi), tLo));
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_CmpNE64: return Xcc_NZ;
|
|
default: vpanic("iselCondCode(x86): CmpXX64");
|
|
}
|
|
}
|
|
|
|
/* var */
|
|
if (e->tag == Iex_Tmp) {
|
|
HReg r32 = lookupIRTemp(env, e->Iex.Tmp.tmp);
|
|
HReg dst = newVRegI(env);
|
|
addInstr(env, mk_iMOVsd_RR(r32,dst));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_AND,X86RMI_Imm(1),dst));
|
|
return Xcc_NZ;
|
|
}
|
|
|
|
ppIRExpr(e);
|
|
vpanic("iselCondCode");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Integer expressions (64 bit) ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Compute a 64-bit value into a register pair, which is returned as
|
|
the first two parameters. As with iselIntExpr_R, these may be
|
|
either real or virtual regs; in any case they must not be changed
|
|
by subsequent code emitted by the caller. */
|
|
|
|
static void iselInt64Expr ( HReg* rHi, HReg* rLo, ISelEnv* env, IRExpr* e )
|
|
{
|
|
iselInt64Expr_wrk(rHi, rLo, env, e);
|
|
# if 0
|
|
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
|
|
# endif
|
|
vassert(hregClass(*rHi) == HRcInt32);
|
|
vassert(hregIsVirtual(*rHi));
|
|
vassert(hregClass(*rLo) == HRcInt32);
|
|
vassert(hregIsVirtual(*rLo));
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY ! */
|
|
static void iselInt64Expr_wrk ( HReg* rHi, HReg* rLo, ISelEnv* env, IRExpr* e )
|
|
{
|
|
HWord fn = 0; /* helper fn for most SIMD64 stuff */
|
|
vassert(e);
|
|
vassert(typeOfIRExpr(env->type_env,e) == Ity_I64);
|
|
|
|
/* 64-bit literal */
|
|
if (e->tag == Iex_Const) {
|
|
ULong w64 = e->Iex.Const.con->Ico.U64;
|
|
UInt wHi = ((UInt)(w64 >> 32)) & 0xFFFFFFFF;
|
|
UInt wLo = ((UInt)w64) & 0xFFFFFFFF;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
vassert(e->Iex.Const.con->tag == Ico_U64);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wHi), tHi));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(wLo), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* read 64-bit IRTemp */
|
|
if (e->tag == Iex_Tmp) {
|
|
lookupIRTemp64( rHi, rLo, env, e->Iex.Tmp.tmp);
|
|
return;
|
|
}
|
|
|
|
/* 64-bit load */
|
|
if (e->tag == Iex_LDle) {
|
|
HReg tLo, tHi;
|
|
X86AMode *am0, *am4;
|
|
vassert(e->Iex.LDle.ty == Ity_I64);
|
|
tLo = newVRegI(env);
|
|
tHi = newVRegI(env);
|
|
am0 = iselIntExpr_AMode(env, e->Iex.LDle.addr);
|
|
am4 = advance4(am0);
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am0), tLo ));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 64-bit GET */
|
|
if (e->tag == Iex_Get) {
|
|
X86AMode* am = X86AMode_IR(e->Iex.Get.offset, hregX86_EBP());
|
|
X86AMode* am4 = advance4(am);
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 64-bit GETI */
|
|
if (e->tag == Iex_GetI) {
|
|
X86AMode* am
|
|
= genGuestArrayOffset( env, e->Iex.GetI.descr,
|
|
e->Iex.GetI.ix, e->Iex.GetI.bias );
|
|
X86AMode* am4 = advance4(am);
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am), tLo ));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV, X86RMI_Mem(am4), tHi ));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 64-bit Mux0X */
|
|
if (e->tag == Iex_Mux0X) {
|
|
HReg e0Lo, e0Hi, eXLo, eXHi, r8;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
iselInt64Expr(&e0Hi, &e0Lo, env, e->Iex.Mux0X.expr0);
|
|
iselInt64Expr(&eXHi, &eXLo, env, e->Iex.Mux0X.exprX);
|
|
addInstr(env, mk_iMOVsd_RR(eXHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(eXLo, tLo));
|
|
r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
|
|
addInstr(env, X86Instr_Test32(0xFF, r8));
|
|
/* This assumes the first cmov32 doesn't trash the condition
|
|
codes, so they are still available for the second cmov32 */
|
|
addInstr(env, X86Instr_CMov32(Xcc_Z,X86RM_Reg(e0Hi),tHi));
|
|
addInstr(env, X86Instr_CMov32(Xcc_Z,X86RM_Reg(e0Lo),tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* --------- BINARY ops --------- */
|
|
if (e->tag == Iex_Binop) {
|
|
switch (e->Iex.Binop.op) {
|
|
/* 32 x 32 -> 64 multiply */
|
|
case Iop_MullU32:
|
|
case Iop_MullS32: {
|
|
/* get one operand into %eax, and the other into a R/M.
|
|
Need to make an educated guess about which is better in
|
|
which. */
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
Bool syned = e->Iex.Binop.op == Iop_MullS32;
|
|
X86RM* rmLeft = iselIntExpr_RM(env, e->Iex.Binop.arg1);
|
|
HReg rRight = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
addInstr(env, mk_iMOVsd_RR(rRight, hregX86_EAX()));
|
|
addInstr(env, X86Instr_MulL(syned, rmLeft));
|
|
/* Result is now in EDX:EAX. Tell the caller. */
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 64 x 32 -> (32(rem),32(div)) division */
|
|
case Iop_DivModU64to32:
|
|
case Iop_DivModS64to32: {
|
|
/* Get the 64-bit operand into edx:eax, and the other into
|
|
any old R/M. */
|
|
HReg sHi, sLo;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
Bool syned = e->Iex.Binop.op == Iop_DivModS64to32;
|
|
X86RM* rmRight = iselIntExpr_RM(env, e->Iex.Binop.arg2);
|
|
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(sHi, hregX86_EDX()));
|
|
addInstr(env, mk_iMOVsd_RR(sLo, hregX86_EAX()));
|
|
addInstr(env, X86Instr_Div(syned, rmRight));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* Or64/And64/Xor64 */
|
|
case Iop_Or64:
|
|
case Iop_And64:
|
|
case Iop_Xor64: {
|
|
HReg xLo, xHi, yLo, yHi;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
X86AluOp op = e->Iex.Binop.op==Iop_Or64 ? Xalu_OR
|
|
: e->Iex.Binop.op==Iop_And64 ? Xalu_AND
|
|
: Xalu_XOR;
|
|
iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(xHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(xLo, tLo));
|
|
iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yHi), tHi));
|
|
addInstr(env, X86Instr_Alu32R(op, X86RMI_Reg(yLo), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* Add64/Sub64 */
|
|
case Iop_Add64:
|
|
case Iop_Sub64: {
|
|
HReg xLo, xHi, yLo, yHi;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(xHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(xLo, tLo));
|
|
iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
|
|
if (e->Iex.Binop.op==Iop_Add64) {
|
|
addInstr(env, X86Instr_Alu32R(Xalu_ADD, X86RMI_Reg(yLo), tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_ADC, X86RMI_Reg(yHi), tHi));
|
|
} else {
|
|
addInstr(env, X86Instr_Alu32R(Xalu_SUB, X86RMI_Reg(yLo), tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(yHi), tHi));
|
|
}
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 32HLto64(e1,e2) */
|
|
case Iop_32HLto64:
|
|
*rHi = iselIntExpr_R(env, e->Iex.Binop.arg1);
|
|
*rLo = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
return;
|
|
|
|
/* 64-bit shifts */
|
|
case Iop_Shl64: {
|
|
/* We use the same ingenious scheme as gcc. Put the value
|
|
to be shifted into %hi:%lo, and the shift amount into
|
|
%cl. Then (dsts on right, a la ATT syntax):
|
|
|
|
shldl %cl, %lo, %hi -- make %hi be right for the
|
|
-- shift amt %cl % 32
|
|
shll %cl, %lo -- make %lo be right for the
|
|
-- shift amt %cl % 32
|
|
|
|
Now, if (shift amount % 64) is in the range 32 .. 63,
|
|
we have to do a fixup, which puts the result low half
|
|
into the result high half, and zeroes the low half:
|
|
|
|
testl $32, %ecx
|
|
|
|
cmovnz %lo, %hi
|
|
movl $0, %tmp -- sigh; need yet another reg
|
|
cmovnz %tmp, %lo
|
|
*/
|
|
HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
|
|
tLo = newVRegI(env);
|
|
tHi = newVRegI(env);
|
|
tTemp = newVRegI(env);
|
|
rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
|
|
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
|
|
/* Ok. Now shift amt is in %ecx, and value is in tHi/tLo
|
|
and those regs are legitimately modifiable. */
|
|
addInstr(env, X86Instr_Sh3232(Xsh_SHL, 0/*%cl*/, tLo, tHi));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 0/*%cl*/, tLo));
|
|
addInstr(env, X86Instr_Test32(32, hregX86_ECX()));
|
|
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tLo), tHi));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
|
|
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
case Iop_Shr64: {
|
|
/* We use the same ingenious scheme as gcc. Put the value
|
|
to be shifted into %hi:%lo, and the shift amount into
|
|
%cl. Then:
|
|
|
|
shrdl %cl, %hi, %lo -- make %lo be right for the
|
|
-- shift amt %cl % 32
|
|
shrl %cl, %hi -- make %hi be right for the
|
|
-- shift amt %cl % 32
|
|
|
|
Now, if (shift amount % 64) is in the range 32 .. 63,
|
|
we have to do a fixup, which puts the result high half
|
|
into the result low half, and zeroes the high half:
|
|
|
|
testl $32, %ecx
|
|
|
|
cmovnz %hi, %lo
|
|
movl $0, %tmp -- sigh; need yet another reg
|
|
cmovnz %tmp, %hi
|
|
*/
|
|
HReg rAmt, sHi, sLo, tHi, tLo, tTemp;
|
|
tLo = newVRegI(env);
|
|
tHi = newVRegI(env);
|
|
tTemp = newVRegI(env);
|
|
rAmt = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
iselInt64Expr(&sHi,&sLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, mk_iMOVsd_RR(rAmt, hregX86_ECX()));
|
|
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
|
|
/* Ok. Now shift amt is in %ecx, and value is in tHi/tLo
|
|
and those regs are legitimately modifiable. */
|
|
addInstr(env, X86Instr_Sh3232(Xsh_SHR, 0/*%cl*/, tHi, tLo));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHR, 0/*%cl*/, tHi));
|
|
addInstr(env, X86Instr_Test32(32, hregX86_ECX()));
|
|
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tHi), tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tTemp));
|
|
addInstr(env, X86Instr_CMov32(Xcc_NZ, X86RM_Reg(tTemp), tHi));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* F64 -> I64 */
|
|
/* Sigh, this is an almost exact copy of the F64 -> I32/I16
|
|
case. Unfortunately I see no easy way to avoid the
|
|
duplication. */
|
|
case Iop_F64toI64: {
|
|
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
|
|
/* Used several times ... */
|
|
/* Careful ... this sharing is only safe because
|
|
zero_esp/four_esp do not hold any registers which the
|
|
register allocator could attempt to swizzle later. */
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());
|
|
|
|
/* rf now holds the value to be converted, and rrm holds
|
|
the rounding mode value, encoded as per the
|
|
IRRoundingMode enum. The first thing to do is set the
|
|
FPU's rounding mode accordingly. */
|
|
|
|
/* Create a space for the format conversion. */
|
|
/* subl $8, %esp */
|
|
sub_from_esp(env, 8);
|
|
|
|
/* Set host rounding mode */
|
|
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
|
|
|
|
/* gistll %rf, 0(%esp) */
|
|
addInstr(env, X86Instr_FpLdStI(False/*store*/, 8, rf, zero_esp));
|
|
|
|
/* movl 0(%esp), %dstLo */
|
|
/* movl 4(%esp), %dstHi */
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
|
|
addInstr(env, X86Instr_Alu32R(
|
|
Xalu_MOV, X86RMI_Mem(four_esp), tHi));
|
|
|
|
/* Restore default FPU rounding. */
|
|
set_FPU_rounding_default( env );
|
|
|
|
/* addl $8, %esp */
|
|
add_to_esp(env, 8);
|
|
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
case Iop_Add8x8:
|
|
fn = (HWord)h_generic_calc_Add8x8; goto binnish;
|
|
case Iop_Add16x4:
|
|
fn = (HWord)h_generic_calc_Add16x4; goto binnish;
|
|
case Iop_Add32x2:
|
|
fn = (HWord)h_generic_calc_Add32x2; goto binnish;
|
|
|
|
case Iop_Avg8Ux8:
|
|
fn = (HWord)h_generic_calc_Avg8Ux8; goto binnish;
|
|
case Iop_Avg16Ux4:
|
|
fn = (HWord)h_generic_calc_Avg16Ux4; goto binnish;
|
|
|
|
case Iop_CmpEQ8x8:
|
|
fn = (HWord)h_generic_calc_CmpEQ8x8; goto binnish;
|
|
case Iop_CmpEQ16x4:
|
|
fn = (HWord)h_generic_calc_CmpEQ16x4; goto binnish;
|
|
case Iop_CmpEQ32x2:
|
|
fn = (HWord)h_generic_calc_CmpEQ32x2; goto binnish;
|
|
|
|
case Iop_CmpGT8Sx8:
|
|
fn = (HWord)h_generic_calc_CmpGT8Sx8; goto binnish;
|
|
case Iop_CmpGT16Sx4:
|
|
fn = (HWord)h_generic_calc_CmpGT16Sx4; goto binnish;
|
|
case Iop_CmpGT32Sx2:
|
|
fn = (HWord)h_generic_calc_CmpGT32Sx2; goto binnish;
|
|
|
|
case Iop_InterleaveHI8x8:
|
|
fn = (HWord)h_generic_calc_InterleaveHI8x8; goto binnish;
|
|
case Iop_InterleaveLO8x8:
|
|
fn = (HWord)h_generic_calc_InterleaveLO8x8; goto binnish;
|
|
case Iop_InterleaveHI16x4:
|
|
fn = (HWord)h_generic_calc_InterleaveHI16x4; goto binnish;
|
|
case Iop_InterleaveLO16x4:
|
|
fn = (HWord)h_generic_calc_InterleaveLO16x4; goto binnish;
|
|
case Iop_InterleaveHI32x2:
|
|
fn = (HWord)h_generic_calc_InterleaveHI32x2; goto binnish;
|
|
case Iop_InterleaveLO32x2:
|
|
fn = (HWord)h_generic_calc_InterleaveLO32x2; goto binnish;
|
|
|
|
case Iop_Max8Ux8:
|
|
fn = (HWord)h_generic_calc_Max8Ux8; goto binnish;
|
|
case Iop_Max16Sx4:
|
|
fn = (HWord)h_generic_calc_Max16Sx4; goto binnish;
|
|
case Iop_Min8Ux8:
|
|
fn = (HWord)h_generic_calc_Min8Ux8; goto binnish;
|
|
case Iop_Min16Sx4:
|
|
fn = (HWord)h_generic_calc_Min16Sx4; goto binnish;
|
|
|
|
case Iop_Mul16x4:
|
|
fn = (HWord)h_generic_calc_Mul16x4; goto binnish;
|
|
case Iop_MulHi16Sx4:
|
|
fn = (HWord)h_generic_calc_MulHi16Sx4; goto binnish;
|
|
case Iop_MulHi16Ux4:
|
|
fn = (HWord)h_generic_calc_MulHi16Ux4; goto binnish;
|
|
|
|
case Iop_QAdd8Sx8:
|
|
fn = (HWord)h_generic_calc_QAdd8Sx8; goto binnish;
|
|
case Iop_QAdd16Sx4:
|
|
fn = (HWord)h_generic_calc_QAdd16Sx4; goto binnish;
|
|
case Iop_QAdd8Ux8:
|
|
fn = (HWord)h_generic_calc_QAdd8Ux8; goto binnish;
|
|
case Iop_QAdd16Ux4:
|
|
fn = (HWord)h_generic_calc_QAdd16Ux4; goto binnish;
|
|
|
|
case Iop_QNarrow32Sx2:
|
|
fn = (HWord)h_generic_calc_QNarrow32Sx2; goto binnish;
|
|
case Iop_QNarrow16Sx4:
|
|
fn = (HWord)h_generic_calc_QNarrow16Sx4; goto binnish;
|
|
case Iop_QNarrow16Ux4:
|
|
fn = (HWord)h_generic_calc_QNarrow16Ux4; goto binnish;
|
|
|
|
case Iop_QSub8Sx8:
|
|
fn = (HWord)h_generic_calc_QSub8Sx8; goto binnish;
|
|
case Iop_QSub16Sx4:
|
|
fn = (HWord)h_generic_calc_QSub16Sx4; goto binnish;
|
|
case Iop_QSub8Ux8:
|
|
fn = (HWord)h_generic_calc_QSub8Ux8; goto binnish;
|
|
case Iop_QSub16Ux4:
|
|
fn = (HWord)h_generic_calc_QSub16Ux4; goto binnish;
|
|
|
|
case Iop_Sub8x8:
|
|
fn = (HWord)h_generic_calc_Sub8x8; goto binnish;
|
|
case Iop_Sub16x4:
|
|
fn = (HWord)h_generic_calc_Sub16x4; goto binnish;
|
|
case Iop_Sub32x2:
|
|
fn = (HWord)h_generic_calc_Sub32x2; goto binnish;
|
|
|
|
binnish: {
|
|
/* Note: the following assumes all helpers are of
|
|
signature
|
|
ULong fn ( ULong, ULong ), and they are
|
|
not marked as regparm functions.
|
|
*/
|
|
HReg xLo, xHi, yLo, yHi;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
iselInt64Expr(&yHi, &yLo, env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(yHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(yLo)));
|
|
iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
|
|
addInstr(env, X86Instr_Call( Xcc_ALWAYS, (UInt)fn, 0 ));
|
|
add_to_esp(env, 4*4);
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
case Iop_ShlN32x2:
|
|
fn = (HWord)h_generic_calc_ShlN32x2; goto shifty;
|
|
case Iop_ShlN16x4:
|
|
fn = (HWord)h_generic_calc_ShlN16x4; goto shifty;
|
|
case Iop_ShrN32x2:
|
|
fn = (HWord)h_generic_calc_ShrN32x2; goto shifty;
|
|
case Iop_ShrN16x4:
|
|
fn = (HWord)h_generic_calc_ShrN16x4; goto shifty;
|
|
case Iop_SarN32x2:
|
|
fn = (HWord)h_generic_calc_SarN32x2; goto shifty;
|
|
case Iop_SarN16x4:
|
|
fn = (HWord)h_generic_calc_SarN16x4; goto shifty;
|
|
shifty: {
|
|
/* Note: the following assumes all helpers are of
|
|
signature
|
|
ULong fn ( ULong, UInt ), and they are
|
|
not marked as regparm functions.
|
|
*/
|
|
HReg xLo, xHi;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
X86RMI* y = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Push(y));
|
|
iselInt64Expr(&xHi, &xLo, env, e->Iex.Binop.arg1);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
|
|
addInstr(env, X86Instr_Call( Xcc_ALWAYS, (UInt)fn, 0 ));
|
|
add_to_esp(env, 3*4);
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} /* if (e->tag == Iex_Binop) */
|
|
|
|
|
|
/* --------- UNARY ops --------- */
|
|
if (e->tag == Iex_Unop) {
|
|
switch (e->Iex.Unop.op) {
|
|
|
|
/* 32Sto64(e) */
|
|
case Iop_32Sto64: {
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, mk_iMOVsd_RR(src,tHi));
|
|
addInstr(env, mk_iMOVsd_RR(src,tLo));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tHi));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* 32Uto64(e) */
|
|
case Iop_32Uto64: {
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
HReg src = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, mk_iMOVsd_RR(src,tLo));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Imm(0), tHi));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* V128{HI}to64 */
|
|
case Iop_V128HIto64:
|
|
case Iop_V128to64: {
|
|
Int off = e->Iex.Unop.op==Iop_V128HIto64 ? 8 : 0;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
HReg vec = iselVecExpr(env, e->Iex.Unop.arg);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
X86AMode* espLO = X86AMode_IR(off, hregX86_ESP());
|
|
X86AMode* espHI = X86AMode_IR(off+4, hregX86_ESP());
|
|
sub_from_esp(env, 16);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, esp0));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV,
|
|
X86RMI_Mem(espLO), tLo ));
|
|
addInstr(env, X86Instr_Alu32R( Xalu_MOV,
|
|
X86RMI_Mem(espHI), tHi ));
|
|
add_to_esp(env, 16);
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* could do better than this, but for now ... */
|
|
case Iop_1Sto64: {
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
X86CondCode cond = iselCondCode(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Set32(cond,tLo));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SHL, 31, tLo));
|
|
addInstr(env, X86Instr_Sh32(Xsh_SAR, 31, tLo));
|
|
addInstr(env, mk_iMOVsd_RR(tLo, tHi));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* Not64(e) */
|
|
case Iop_Not64: {
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
HReg sHi, sLo;
|
|
iselInt64Expr(&sHi, &sLo, env, e->Iex.Unop.arg);
|
|
addInstr(env, mk_iMOVsd_RR(sHi, tHi));
|
|
addInstr(env, mk_iMOVsd_RR(sLo, tLo));
|
|
addInstr(env, X86Instr_Unary32(Xun_NOT,tHi));
|
|
addInstr(env, X86Instr_Unary32(Xun_NOT,tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
/* ReinterpF64asI64(e) */
|
|
/* Given an IEEE754 double, produce an I64 with the same bit
|
|
pattern. */
|
|
case Iop_ReinterpF64asI64: {
|
|
HReg rf = iselDblExpr(env, e->Iex.Unop.arg);
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
X86AMode* zero_esp = X86AMode_IR(0, hregX86_ESP());
|
|
X86AMode* four_esp = X86AMode_IR(4, hregX86_ESP());
|
|
/* paranoia */
|
|
set_FPU_rounding_default(env);
|
|
/* subl $8, %esp */
|
|
sub_from_esp(env, 8);
|
|
/* gstD %rf, 0(%esp) */
|
|
addInstr(env,
|
|
X86Instr_FpLdSt(False/*store*/, 8, rf, zero_esp));
|
|
/* movl 0(%esp), %tLo */
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(zero_esp), tLo));
|
|
/* movl 4(%esp), %tHi */
|
|
addInstr(env,
|
|
X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(four_esp), tHi));
|
|
/* addl $8, %esp */
|
|
add_to_esp(env, 8);
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
case Iop_CmpNEZ32x2:
|
|
fn = (HWord)h_generic_calc_CmpNEZ32x2; goto unish;
|
|
case Iop_CmpNEZ16x4:
|
|
fn = (HWord)h_generic_calc_CmpNEZ16x4; goto unish;
|
|
case Iop_CmpNEZ8x8:
|
|
fn = (HWord)h_generic_calc_CmpNEZ8x8; goto unish;
|
|
unish: {
|
|
/* Note: the following assumes all helpers are of
|
|
signature
|
|
ULong fn ( ULong ), and they are
|
|
not marked as regparm functions.
|
|
*/
|
|
HReg xLo, xHi;
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
iselInt64Expr(&xHi, &xLo, env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(xLo)));
|
|
addInstr(env, X86Instr_Call( Xcc_ALWAYS, (UInt)fn, 0 ));
|
|
add_to_esp(env, 2*4);
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
} /* if (e->tag == Iex_Unop) */
|
|
|
|
|
|
/* --------- CCALL --------- */
|
|
if (e->tag == Iex_CCall) {
|
|
HReg tLo = newVRegI(env);
|
|
HReg tHi = newVRegI(env);
|
|
|
|
/* Marshal args, do the call, clear stack. */
|
|
doHelperCall( env, False, NULL, e->Iex.CCall.cee, e->Iex.CCall.args );
|
|
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(), tHi));
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(), tLo));
|
|
*rHi = tHi;
|
|
*rLo = tLo;
|
|
return;
|
|
}
|
|
|
|
ppIRExpr(e);
|
|
vpanic("iselInt64Expr");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Floating point expressions (32 bit) ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Nothing interesting here; really just wrappers for
|
|
64-bit stuff. */
|
|
|
|
static HReg iselFltExpr ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
HReg r = iselFltExpr_wrk( env, e );
|
|
# if 0
|
|
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
|
|
# endif
|
|
vassert(hregClass(r) == HRcFlt64); /* yes, really Flt64 */
|
|
vassert(hregIsVirtual(r));
|
|
return r;
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY */
|
|
static HReg iselFltExpr_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(ty == Ity_F32);
|
|
|
|
if (e->tag == Iex_Tmp) {
|
|
return lookupIRTemp(env, e->Iex.Tmp.tmp);
|
|
}
|
|
|
|
if (e->tag == Iex_LDle) {
|
|
X86AMode* am;
|
|
HReg res = newVRegF(env);
|
|
vassert(e->Iex.LDle.ty == Ity_F32);
|
|
am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
|
|
addInstr(env, X86Instr_FpLdSt(True/*load*/, 4, res, am));
|
|
return res;
|
|
}
|
|
|
|
if (e->tag == Iex_Binop
|
|
&& e->Iex.Binop.op == Iop_F64toF32) {
|
|
/* Although the result is still held in a standard FPU register,
|
|
we need to round it to reflect the loss of accuracy/range
|
|
entailed in casting it to a 32-bit float. */
|
|
HReg dst = newVRegF(env);
|
|
HReg src = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
|
|
addInstr(env, X86Instr_Fp64to32(src,dst));
|
|
set_FPU_rounding_default( env );
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_Get) {
|
|
X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
|
|
hregX86_EBP() );
|
|
HReg res = newVRegF(env);
|
|
addInstr(env, X86Instr_FpLdSt( True/*load*/, 4, res, am ));
|
|
return res;
|
|
}
|
|
|
|
if (e->tag == Iex_Unop
|
|
&& e->Iex.Unop.op == Iop_ReinterpI32asF32) {
|
|
/* Given an I32, produce an IEEE754 float with the same bit
|
|
pattern. */
|
|
HReg dst = newVRegF(env);
|
|
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Unop.arg);
|
|
/* paranoia */
|
|
addInstr(env, X86Instr_Push(rmi));
|
|
addInstr(env, X86Instr_FpLdSt(
|
|
True/*load*/, 4, dst,
|
|
X86AMode_IR(0, hregX86_ESP())));
|
|
add_to_esp(env, 4);
|
|
return dst;
|
|
}
|
|
|
|
ppIRExpr(e);
|
|
vpanic("iselFltExpr_wrk");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Floating point expressions (64 bit) ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Compute a 64-bit floating point value into a register, the identity
|
|
of which is returned. As with iselIntExpr_R, the reg may be either
|
|
real or virtual; in any case it must not be changed by subsequent
|
|
code emitted by the caller. */
|
|
|
|
/* IEEE 754 formats. From http://www.freesoft.org/CIE/RFC/1832/32.htm:
|
|
|
|
Type S (1 bit) E (11 bits) F (52 bits)
|
|
---- --------- ----------- -----------
|
|
signalling NaN u 2047 (max) .0uuuuu---u
|
|
(with at least
|
|
one 1 bit)
|
|
quiet NaN u 2047 (max) .1uuuuu---u
|
|
|
|
negative infinity 1 2047 (max) .000000---0
|
|
|
|
positive infinity 0 2047 (max) .000000---0
|
|
|
|
negative zero 1 0 .000000---0
|
|
|
|
positive zero 0 0 .000000---0
|
|
*/
|
|
|
|
static HReg iselDblExpr ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
HReg r = iselDblExpr_wrk( env, e );
|
|
# if 0
|
|
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
|
|
# endif
|
|
vassert(hregClass(r) == HRcFlt64);
|
|
vassert(hregIsVirtual(r));
|
|
return r;
|
|
}
|
|
|
|
/* DO NOT CALL THIS DIRECTLY */
|
|
static HReg iselDblExpr_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(e);
|
|
vassert(ty == Ity_F64);
|
|
|
|
if (e->tag == Iex_Tmp) {
|
|
return lookupIRTemp(env, e->Iex.Tmp.tmp);
|
|
}
|
|
|
|
if (e->tag == Iex_Const) {
|
|
union { UInt u32x2[2]; ULong u64; Double f64; } u;
|
|
HReg freg = newVRegF(env);
|
|
vassert(sizeof(u) == 8);
|
|
vassert(sizeof(u.u64) == 8);
|
|
vassert(sizeof(u.f64) == 8);
|
|
vassert(sizeof(u.u32x2) == 8);
|
|
|
|
if (e->Iex.Const.con->tag == Ico_F64) {
|
|
u.f64 = e->Iex.Const.con->Ico.F64;
|
|
}
|
|
else if (e->Iex.Const.con->tag == Ico_F64i) {
|
|
u.u64 = e->Iex.Const.con->Ico.F64i;
|
|
}
|
|
else
|
|
vpanic("iselDblExpr(x86): const");
|
|
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[1])));
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(u.u32x2[0])));
|
|
addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, freg,
|
|
X86AMode_IR(0, hregX86_ESP())));
|
|
add_to_esp(env, 8);
|
|
return freg;
|
|
}
|
|
|
|
if (e->tag == Iex_LDle) {
|
|
X86AMode* am;
|
|
HReg res = newVRegF(env);
|
|
vassert(e->Iex.LDle.ty == Ity_F64);
|
|
am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
|
|
addInstr(env, X86Instr_FpLdSt(True/*load*/, 8, res, am));
|
|
return res;
|
|
}
|
|
|
|
if (e->tag == Iex_Get) {
|
|
X86AMode* am = X86AMode_IR( e->Iex.Get.offset,
|
|
hregX86_EBP() );
|
|
HReg res = newVRegF(env);
|
|
addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
|
|
return res;
|
|
}
|
|
|
|
if (e->tag == Iex_GetI) {
|
|
X86AMode* am
|
|
= genGuestArrayOffset(
|
|
env, e->Iex.GetI.descr,
|
|
e->Iex.GetI.ix, e->Iex.GetI.bias );
|
|
HReg res = newVRegF(env);
|
|
addInstr(env, X86Instr_FpLdSt( True/*load*/, 8, res, am ));
|
|
return res;
|
|
}
|
|
|
|
if (e->tag == Iex_Binop) {
|
|
X86FpOp fpop = Xfp_INVALID;
|
|
switch (e->Iex.Binop.op) {
|
|
case Iop_AddF64: fpop = Xfp_ADD; break;
|
|
case Iop_SubF64: fpop = Xfp_SUB; break;
|
|
case Iop_MulF64: fpop = Xfp_MUL; break;
|
|
case Iop_DivF64: fpop = Xfp_DIV; break;
|
|
case Iop_ScaleF64: fpop = Xfp_SCALE; break;
|
|
case Iop_AtanF64: fpop = Xfp_ATAN; break;
|
|
case Iop_Yl2xF64: fpop = Xfp_YL2X; break;
|
|
case Iop_Yl2xp1F64: fpop = Xfp_YL2XP1; break;
|
|
case Iop_PRemF64: fpop = Xfp_PREM; break;
|
|
case Iop_PRem1F64: fpop = Xfp_PREM1; break;
|
|
default: break;
|
|
}
|
|
if (fpop != Xfp_INVALID) {
|
|
HReg res = newVRegF(env);
|
|
HReg srcL = iselDblExpr(env, e->Iex.Binop.arg1);
|
|
HReg srcR = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_FpBinary(fpop,srcL,srcR,res));
|
|
if (fpop != Xfp_ADD && fpop != Xfp_SUB
|
|
&& fpop != Xfp_MUL && fpop != Xfp_DIV)
|
|
roundToF64(env, res);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_RoundF64) {
|
|
HReg rf = iselDblExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegF(env);
|
|
|
|
/* rf now holds the value to be rounded. The first thing to do
|
|
is set the FPU's rounding mode accordingly. */
|
|
|
|
/* Set host rounding mode */
|
|
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
|
|
|
|
/* grndint %rf, %dst */
|
|
addInstr(env, X86Instr_FpUnary(Xfp_ROUND, rf, dst));
|
|
|
|
/* Restore default FPU rounding. */
|
|
set_FPU_rounding_default( env );
|
|
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_Binop && e->Iex.Binop.op == Iop_I64toF64) {
|
|
HReg dst = newVRegF(env);
|
|
HReg rHi,rLo;
|
|
iselInt64Expr( &rHi, &rLo, env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
|
|
|
|
/* Set host rounding mode */
|
|
set_FPU_rounding_mode( env, e->Iex.Binop.arg1 );
|
|
|
|
addInstr(env, X86Instr_FpLdStI(
|
|
True/*load*/, 8, dst,
|
|
X86AMode_IR(0, hregX86_ESP())));
|
|
|
|
/* Restore default FPU rounding. */
|
|
set_FPU_rounding_default( env );
|
|
|
|
add_to_esp(env, 8);
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_Unop) {
|
|
X86FpOp fpop = Xfp_INVALID;
|
|
switch (e->Iex.Unop.op) {
|
|
case Iop_NegF64: fpop = Xfp_NEG; break;
|
|
case Iop_AbsF64: fpop = Xfp_ABS; break;
|
|
case Iop_SqrtF64: fpop = Xfp_SQRT; break;
|
|
case Iop_SinF64: fpop = Xfp_SIN; break;
|
|
case Iop_CosF64: fpop = Xfp_COS; break;
|
|
case Iop_TanF64: fpop = Xfp_TAN; break;
|
|
case Iop_2xm1F64: fpop = Xfp_2XM1; break;
|
|
default: break;
|
|
}
|
|
if (fpop != Xfp_INVALID) {
|
|
HReg res = newVRegF(env);
|
|
HReg src = iselDblExpr(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_FpUnary(fpop,src,res));
|
|
if (fpop != Xfp_SQRT
|
|
&& fpop != Xfp_NEG && fpop != Xfp_ABS)
|
|
roundToF64(env, res);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (e->tag == Iex_Unop) {
|
|
switch (e->Iex.Unop.op) {
|
|
case Iop_I32toF64: {
|
|
HReg dst = newVRegF(env);
|
|
HReg ri = iselIntExpr_R(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(ri)));
|
|
set_FPU_rounding_default(env);
|
|
addInstr(env, X86Instr_FpLdStI(
|
|
True/*load*/, 4, dst,
|
|
X86AMode_IR(0, hregX86_ESP())));
|
|
add_to_esp(env, 4);
|
|
return dst;
|
|
}
|
|
case Iop_ReinterpI64asF64: {
|
|
/* Given an I64, produce an IEEE754 double with the same
|
|
bit pattern. */
|
|
HReg dst = newVRegF(env);
|
|
HReg rHi, rLo;
|
|
iselInt64Expr( &rHi, &rLo, env, e->Iex.Unop.arg);
|
|
/* paranoia */
|
|
set_FPU_rounding_default(env);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
|
|
addInstr(env, X86Instr_FpLdSt(
|
|
True/*load*/, 8, dst,
|
|
X86AMode_IR(0, hregX86_ESP())));
|
|
add_to_esp(env, 8);
|
|
return dst;
|
|
}
|
|
case Iop_F32toF64: {
|
|
/* this is a no-op */
|
|
HReg res = iselFltExpr(env, e->Iex.Unop.arg);
|
|
return res;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* --------- MULTIPLEX --------- */
|
|
if (e->tag == Iex_Mux0X) {
|
|
if (ty == Ity_F64
|
|
&& typeOfIRExpr(env->type_env,e->Iex.Mux0X.cond) == Ity_I8) {
|
|
HReg r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
|
|
HReg rX = iselDblExpr(env, e->Iex.Mux0X.exprX);
|
|
HReg r0 = iselDblExpr(env, e->Iex.Mux0X.expr0);
|
|
HReg dst = newVRegF(env);
|
|
addInstr(env, X86Instr_FpUnary(Xfp_MOV,rX,dst));
|
|
addInstr(env, X86Instr_Test32(0xFF, r8));
|
|
addInstr(env, X86Instr_FpCMov(Xcc_Z,r0,dst));
|
|
return dst;
|
|
}
|
|
}
|
|
|
|
ppIRExpr(e);
|
|
vpanic("iselDblExpr_wrk");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: SIMD (Vector) expressions, 128 bit. ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
static HReg iselVecExpr ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
HReg r = iselVecExpr_wrk( env, e );
|
|
# if 0
|
|
vex_printf("\n"); ppIRExpr(e); vex_printf("\n");
|
|
# endif
|
|
vassert(hregClass(r) == HRcVec128);
|
|
vassert(hregIsVirtual(r));
|
|
return r;
|
|
}
|
|
|
|
|
|
/* DO NOT CALL THIS DIRECTLY */
|
|
static HReg iselVecExpr_wrk ( ISelEnv* env, IRExpr* e )
|
|
{
|
|
|
|
# define REQUIRE_SSE1 \
|
|
do { if (env->subarch == VexSubArchX86_sse0) \
|
|
goto vec_fail; \
|
|
} while (0)
|
|
|
|
# define REQUIRE_SSE2 \
|
|
do { if (env->subarch == VexSubArchX86_sse0 \
|
|
|| env->subarch == VexSubArchX86_sse1) \
|
|
goto vec_fail; \
|
|
} while (0)
|
|
|
|
Bool arg1isEReg = False;
|
|
X86SseOp op = Xsse_INVALID;
|
|
IRType ty = typeOfIRExpr(env->type_env,e);
|
|
vassert(e);
|
|
vassert(ty == Ity_V128);
|
|
|
|
REQUIRE_SSE1;
|
|
|
|
if (e->tag == Iex_Tmp) {
|
|
return lookupIRTemp(env, e->Iex.Tmp.tmp);
|
|
}
|
|
|
|
if (e->tag == Iex_Get) {
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, X86Instr_SseLdSt(
|
|
True/*load*/,
|
|
dst,
|
|
X86AMode_IR(e->Iex.Get.offset, hregX86_EBP())
|
|
)
|
|
);
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_LDle) {
|
|
HReg dst = newVRegV(env);
|
|
X86AMode* am = iselIntExpr_AMode(env, e->Iex.LDle.addr);
|
|
addInstr(env, X86Instr_SseLdSt( True/*load*/, dst, am ));
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_Const) {
|
|
HReg dst = newVRegV(env);
|
|
vassert(e->Iex.Const.con->tag == Ico_V128);
|
|
addInstr(env, X86Instr_SseConst(e->Iex.Const.con->Ico.V128, dst));
|
|
return dst;
|
|
}
|
|
|
|
if (e->tag == Iex_Unop) {
|
|
switch (e->Iex.Unop.op) {
|
|
|
|
case Iop_NotV128: {
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
return do_sse_Not128(env, arg);
|
|
}
|
|
|
|
case Iop_CmpNEZ64x2: {
|
|
/* We can use SSE2 instructions for this. */
|
|
/* Ideally, we want to do a 64Ix2 comparison against zero of
|
|
the operand. Problem is no such insn exists. Solution
|
|
therefore is to do a 32Ix4 comparison instead, and bitwise-
|
|
negate (NOT) the result. Let a,b,c,d be 32-bit lanes, and
|
|
let the not'd result of this initial comparison be a:b:c:d.
|
|
What we need to compute is (a|b):(a|b):(c|d):(c|d). So, use
|
|
pshufd to create a value b:a:d:c, and OR that with a:b:c:d,
|
|
giving the required result.
|
|
|
|
The required selection sequence is 2,3,0,1, which
|
|
according to Intel's documentation means the pshufd
|
|
literal value is 0xB1, that is,
|
|
(2 << 6) | (3 << 4) | (0 << 2) | (1 << 0)
|
|
*/
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg tmp = newVRegV(env);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, X86Instr_SseReRg(Xsse_XOR, tmp, tmp));
|
|
addInstr(env, X86Instr_SseReRg(Xsse_CMPEQ32, arg, tmp));
|
|
tmp = do_sse_Not128(env, tmp);
|
|
addInstr(env, X86Instr_SseShuf(0xB1, tmp, dst));
|
|
addInstr(env, X86Instr_SseReRg(Xsse_OR, tmp, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpNEZ32x4: {
|
|
/* Sigh, we have to generate lousy code since this has to
|
|
work on SSE1 hosts */
|
|
/* basically, the idea is: for each lane:
|
|
movl lane, %r ; negl %r (now CF = lane==0 ? 0 : 1)
|
|
sbbl %r, %r (now %r = 1Sto32(CF))
|
|
movl %r, lane
|
|
*/
|
|
Int i;
|
|
X86AMode* am;
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg dst = newVRegV(env);
|
|
HReg r32 = newVRegI(env);
|
|
sub_from_esp(env, 16);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, arg, esp0));
|
|
for (i = 0; i < 4; i++) {
|
|
am = X86AMode_IR(i*4, hregX86_ESP());
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV, X86RMI_Mem(am), r32));
|
|
addInstr(env, X86Instr_Unary32(Xun_NEG, r32));
|
|
addInstr(env, X86Instr_Alu32R(Xalu_SBB, X86RMI_Reg(r32), r32));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r32), am));
|
|
}
|
|
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpNEZ8x16:
|
|
case Iop_CmpNEZ16x8: {
|
|
/* We can use SSE2 instructions for this. */
|
|
HReg arg;
|
|
HReg vec0 = newVRegV(env);
|
|
HReg vec1 = newVRegV(env);
|
|
HReg dst = newVRegV(env);
|
|
X86SseOp cmpOp
|
|
= e->Iex.Unop.op==Iop_CmpNEZ16x8 ? Xsse_CMPEQ16
|
|
: Xsse_CMPEQ8;
|
|
REQUIRE_SSE2;
|
|
addInstr(env, X86Instr_SseReRg(Xsse_XOR, vec0, vec0));
|
|
addInstr(env, mk_vMOVsd_RR(vec0, vec1));
|
|
addInstr(env, X86Instr_Sse32Fx4(Xsse_CMPEQF, vec1, vec1));
|
|
/* defer arg computation to here so as to give CMPEQF as long
|
|
as possible to complete */
|
|
arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
/* vec0 is all 0s; vec1 is all 1s */
|
|
addInstr(env, mk_vMOVsd_RR(arg, dst));
|
|
/* 16x8 or 8x16 comparison == */
|
|
addInstr(env, X86Instr_SseReRg(cmpOp, vec0, dst));
|
|
/* invert result */
|
|
addInstr(env, X86Instr_SseReRg(Xsse_XOR, vec1, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_Recip32Fx4: op = Xsse_RCPF; goto do_32Fx4_unary;
|
|
case Iop_RSqrt32Fx4: op = Xsse_RSQRTF; goto do_32Fx4_unary;
|
|
case Iop_Sqrt32Fx4: op = Xsse_SQRTF; goto do_32Fx4_unary;
|
|
do_32Fx4_unary:
|
|
{
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, X86Instr_Sse32Fx4(op, arg, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_Recip64Fx2: op = Xsse_RCPF; goto do_64Fx2_unary;
|
|
case Iop_RSqrt64Fx2: op = Xsse_RSQRTF; goto do_64Fx2_unary;
|
|
case Iop_Sqrt64Fx2: op = Xsse_SQRTF; goto do_64Fx2_unary;
|
|
do_64Fx2_unary:
|
|
{
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, X86Instr_Sse64Fx2(op, arg, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_Recip32F0x4: op = Xsse_RCPF; goto do_32F0x4_unary;
|
|
case Iop_RSqrt32F0x4: op = Xsse_RSQRTF; goto do_32F0x4_unary;
|
|
case Iop_Sqrt32F0x4: op = Xsse_SQRTF; goto do_32F0x4_unary;
|
|
do_32F0x4_unary:
|
|
{
|
|
/* A bit subtle. We have to copy the arg to the result
|
|
register first, because actually doing the SSE scalar insn
|
|
leaves the upper 3/4 of the destination register
|
|
unchanged. Whereas the required semantics of these
|
|
primops is that the upper 3/4 is simply copied in from the
|
|
argument. */
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, mk_vMOVsd_RR(arg, dst));
|
|
addInstr(env, X86Instr_Sse32FLo(op, arg, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_Recip64F0x2: op = Xsse_RCPF; goto do_64F0x2_unary;
|
|
case Iop_RSqrt64F0x2: op = Xsse_RSQRTF; goto do_64F0x2_unary;
|
|
case Iop_Sqrt64F0x2: op = Xsse_SQRTF; goto do_64F0x2_unary;
|
|
do_64F0x2_unary:
|
|
{
|
|
/* A bit subtle. We have to copy the arg to the result
|
|
register first, because actually doing the SSE scalar insn
|
|
leaves the upper half of the destination register
|
|
unchanged. Whereas the required semantics of these
|
|
primops is that the upper half is simply copied in from the
|
|
argument. */
|
|
HReg arg = iselVecExpr(env, e->Iex.Unop.arg);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, mk_vMOVsd_RR(arg, dst));
|
|
addInstr(env, X86Instr_Sse64FLo(op, arg, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_32UtoV128: {
|
|
HReg dst = newVRegV(env);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Push(rmi));
|
|
addInstr(env, X86Instr_SseLdzLO(4, dst, esp0));
|
|
add_to_esp(env, 4);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_64UtoV128: {
|
|
HReg rHi, rLo;
|
|
HReg dst = newVRegV(env);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
iselInt64Expr(&rHi, &rLo, env, e->Iex.Unop.arg);
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
|
|
addInstr(env, X86Instr_SseLdzLO(8, dst, esp0));
|
|
add_to_esp(env, 8);
|
|
return dst;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
} /* switch (e->Iex.Unop.op) */
|
|
} /* if (e->tag == Iex_Unop) */
|
|
|
|
if (e->tag == Iex_Binop) {
|
|
switch (e->Iex.Binop.op) {
|
|
|
|
case Iop_SetV128lo32: {
|
|
HReg dst = newVRegV(env);
|
|
HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg srcI = iselIntExpr_R(env, e->Iex.Binop.arg2);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
sub_from_esp(env, 16);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcI), esp0));
|
|
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_SetV128lo64: {
|
|
HReg dst = newVRegV(env);
|
|
HReg srcV = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg srcIhi, srcIlo;
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
X86AMode* esp4 = advance4(esp0);
|
|
iselInt64Expr(&srcIhi, &srcIlo, env, e->Iex.Binop.arg2);
|
|
sub_from_esp(env, 16);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, srcV, esp0));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIlo), esp0));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(srcIhi), esp4));
|
|
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_64HLtoV128: {
|
|
HReg r3, r2, r1, r0;
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
X86AMode* esp4 = advance4(esp0);
|
|
X86AMode* esp8 = advance4(esp4);
|
|
X86AMode* esp12 = advance4(esp8);
|
|
HReg dst = newVRegV(env);
|
|
/* do this via the stack (easy, convenient, etc) */
|
|
sub_from_esp(env, 16);
|
|
/* Do the less significant 64 bits */
|
|
iselInt64Expr(&r1, &r0, env, e->Iex.Binop.arg2);
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r0), esp0));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r1), esp4));
|
|
/* Do the more significant 64 bits */
|
|
iselInt64Expr(&r3, &r2, env, e->Iex.Binop.arg1);
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r2), esp8));
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV, X86RI_Reg(r3), esp12));
|
|
/* Fetch result back from stack. */
|
|
addInstr(env, X86Instr_SseLdSt(True/*load*/, dst, esp0));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpEQ32Fx4: op = Xsse_CMPEQF; goto do_32Fx4;
|
|
case Iop_CmpLT32Fx4: op = Xsse_CMPLTF; goto do_32Fx4;
|
|
case Iop_CmpLE32Fx4: op = Xsse_CMPLEF; goto do_32Fx4;
|
|
case Iop_Add32Fx4: op = Xsse_ADDF; goto do_32Fx4;
|
|
case Iop_Div32Fx4: op = Xsse_DIVF; goto do_32Fx4;
|
|
case Iop_Max32Fx4: op = Xsse_MAXF; goto do_32Fx4;
|
|
case Iop_Min32Fx4: op = Xsse_MINF; goto do_32Fx4;
|
|
case Iop_Mul32Fx4: op = Xsse_MULF; goto do_32Fx4;
|
|
case Iop_Sub32Fx4: op = Xsse_SUBF; goto do_32Fx4;
|
|
do_32Fx4:
|
|
{
|
|
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, mk_vMOVsd_RR(argL, dst));
|
|
addInstr(env, X86Instr_Sse32Fx4(op, argR, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpEQ64Fx2: op = Xsse_CMPEQF; goto do_64Fx2;
|
|
case Iop_CmpLT64Fx2: op = Xsse_CMPLTF; goto do_64Fx2;
|
|
case Iop_CmpLE64Fx2: op = Xsse_CMPLEF; goto do_64Fx2;
|
|
case Iop_Add64Fx2: op = Xsse_ADDF; goto do_64Fx2;
|
|
case Iop_Div64Fx2: op = Xsse_DIVF; goto do_64Fx2;
|
|
case Iop_Max64Fx2: op = Xsse_MAXF; goto do_64Fx2;
|
|
case Iop_Min64Fx2: op = Xsse_MINF; goto do_64Fx2;
|
|
case Iop_Mul64Fx2: op = Xsse_MULF; goto do_64Fx2;
|
|
case Iop_Sub64Fx2: op = Xsse_SUBF; goto do_64Fx2;
|
|
do_64Fx2:
|
|
{
|
|
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, mk_vMOVsd_RR(argL, dst));
|
|
addInstr(env, X86Instr_Sse64Fx2(op, argR, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpEQ32F0x4: op = Xsse_CMPEQF; goto do_32F0x4;
|
|
case Iop_CmpLT32F0x4: op = Xsse_CMPLTF; goto do_32F0x4;
|
|
case Iop_CmpLE32F0x4: op = Xsse_CMPLEF; goto do_32F0x4;
|
|
case Iop_Add32F0x4: op = Xsse_ADDF; goto do_32F0x4;
|
|
case Iop_Div32F0x4: op = Xsse_DIVF; goto do_32F0x4;
|
|
case Iop_Max32F0x4: op = Xsse_MAXF; goto do_32F0x4;
|
|
case Iop_Min32F0x4: op = Xsse_MINF; goto do_32F0x4;
|
|
case Iop_Mul32F0x4: op = Xsse_MULF; goto do_32F0x4;
|
|
case Iop_Sub32F0x4: op = Xsse_SUBF; goto do_32F0x4;
|
|
do_32F0x4: {
|
|
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, mk_vMOVsd_RR(argL, dst));
|
|
addInstr(env, X86Instr_Sse32FLo(op, argR, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_CmpEQ64F0x2: op = Xsse_CMPEQF; goto do_64F0x2;
|
|
case Iop_CmpLT64F0x2: op = Xsse_CMPLTF; goto do_64F0x2;
|
|
case Iop_CmpLE64F0x2: op = Xsse_CMPLEF; goto do_64F0x2;
|
|
case Iop_Add64F0x2: op = Xsse_ADDF; goto do_64F0x2;
|
|
case Iop_Div64F0x2: op = Xsse_DIVF; goto do_64F0x2;
|
|
case Iop_Max64F0x2: op = Xsse_MAXF; goto do_64F0x2;
|
|
case Iop_Min64F0x2: op = Xsse_MINF; goto do_64F0x2;
|
|
case Iop_Mul64F0x2: op = Xsse_MULF; goto do_64F0x2;
|
|
case Iop_Sub64F0x2: op = Xsse_SUBF; goto do_64F0x2;
|
|
do_64F0x2: {
|
|
HReg argL = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg argR = iselVecExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, mk_vMOVsd_RR(argL, dst));
|
|
addInstr(env, X86Instr_Sse64FLo(op, argR, dst));
|
|
return dst;
|
|
}
|
|
|
|
case Iop_QNarrow32Sx4:
|
|
op = Xsse_PACKSSD; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_QNarrow16Sx8:
|
|
op = Xsse_PACKSSW; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_QNarrow16Ux8:
|
|
op = Xsse_PACKUSW; arg1isEReg = True; goto do_SseReRg;
|
|
|
|
case Iop_InterleaveHI8x16:
|
|
op = Xsse_UNPCKHB; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveHI16x8:
|
|
op = Xsse_UNPCKHW; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveHI32x4:
|
|
op = Xsse_UNPCKHD; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveHI64x2:
|
|
op = Xsse_UNPCKHQ; arg1isEReg = True; goto do_SseReRg;
|
|
|
|
case Iop_InterleaveLO8x16:
|
|
op = Xsse_UNPCKLB; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveLO16x8:
|
|
op = Xsse_UNPCKLW; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveLO32x4:
|
|
op = Xsse_UNPCKLD; arg1isEReg = True; goto do_SseReRg;
|
|
case Iop_InterleaveLO64x2:
|
|
op = Xsse_UNPCKLQ; arg1isEReg = True; goto do_SseReRg;
|
|
|
|
case Iop_AndV128: op = Xsse_AND; goto do_SseReRg;
|
|
case Iop_OrV128: op = Xsse_OR; goto do_SseReRg;
|
|
case Iop_XorV128: op = Xsse_XOR; goto do_SseReRg;
|
|
case Iop_Add8x16: op = Xsse_ADD8; goto do_SseReRg;
|
|
case Iop_Add16x8: op = Xsse_ADD16; goto do_SseReRg;
|
|
case Iop_Add32x4: op = Xsse_ADD32; goto do_SseReRg;
|
|
case Iop_Add64x2: op = Xsse_ADD64; goto do_SseReRg;
|
|
case Iop_QAdd8Sx16: op = Xsse_QADD8S; goto do_SseReRg;
|
|
case Iop_QAdd16Sx8: op = Xsse_QADD16S; goto do_SseReRg;
|
|
case Iop_QAdd8Ux16: op = Xsse_QADD8U; goto do_SseReRg;
|
|
case Iop_QAdd16Ux8: op = Xsse_QADD16U; goto do_SseReRg;
|
|
case Iop_Avg8Ux16: op = Xsse_AVG8U; goto do_SseReRg;
|
|
case Iop_Avg16Ux8: op = Xsse_AVG16U; goto do_SseReRg;
|
|
case Iop_CmpEQ8x16: op = Xsse_CMPEQ8; goto do_SseReRg;
|
|
case Iop_CmpEQ16x8: op = Xsse_CMPEQ16; goto do_SseReRg;
|
|
case Iop_CmpEQ32x4: op = Xsse_CMPEQ32; goto do_SseReRg;
|
|
case Iop_CmpGT8Sx16: op = Xsse_CMPGT8S; goto do_SseReRg;
|
|
case Iop_CmpGT16Sx8: op = Xsse_CMPGT16S; goto do_SseReRg;
|
|
case Iop_CmpGT32Sx4: op = Xsse_CMPGT32S; goto do_SseReRg;
|
|
case Iop_Max16Sx8: op = Xsse_MAX16S; goto do_SseReRg;
|
|
case Iop_Max8Ux16: op = Xsse_MAX8U; goto do_SseReRg;
|
|
case Iop_Min16Sx8: op = Xsse_MIN16S; goto do_SseReRg;
|
|
case Iop_Min8Ux16: op = Xsse_MIN8U; goto do_SseReRg;
|
|
case Iop_MulHi16Ux8: op = Xsse_MULHI16U; goto do_SseReRg;
|
|
case Iop_MulHi16Sx8: op = Xsse_MULHI16S; goto do_SseReRg;
|
|
case Iop_Mul16x8: op = Xsse_MUL16; goto do_SseReRg;
|
|
case Iop_Sub8x16: op = Xsse_SUB8; goto do_SseReRg;
|
|
case Iop_Sub16x8: op = Xsse_SUB16; goto do_SseReRg;
|
|
case Iop_Sub32x4: op = Xsse_SUB32; goto do_SseReRg;
|
|
case Iop_Sub64x2: op = Xsse_SUB64; goto do_SseReRg;
|
|
case Iop_QSub8Sx16: op = Xsse_QSUB8S; goto do_SseReRg;
|
|
case Iop_QSub16Sx8: op = Xsse_QSUB16S; goto do_SseReRg;
|
|
case Iop_QSub8Ux16: op = Xsse_QSUB8U; goto do_SseReRg;
|
|
case Iop_QSub16Ux8: op = Xsse_QSUB16U; goto do_SseReRg;
|
|
do_SseReRg: {
|
|
HReg arg1 = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
HReg arg2 = iselVecExpr(env, e->Iex.Binop.arg2);
|
|
HReg dst = newVRegV(env);
|
|
if (op != Xsse_OR && op != Xsse_AND && op != Xsse_XOR)
|
|
REQUIRE_SSE2;
|
|
if (arg1isEReg) {
|
|
addInstr(env, mk_vMOVsd_RR(arg2, dst));
|
|
addInstr(env, X86Instr_SseReRg(op, arg1, dst));
|
|
} else {
|
|
addInstr(env, mk_vMOVsd_RR(arg1, dst));
|
|
addInstr(env, X86Instr_SseReRg(op, arg2, dst));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
case Iop_ShlN16x8: op = Xsse_SHL16; goto do_SseShift;
|
|
case Iop_ShlN32x4: op = Xsse_SHL32; goto do_SseShift;
|
|
case Iop_ShlN64x2: op = Xsse_SHL64; goto do_SseShift;
|
|
case Iop_SarN16x8: op = Xsse_SAR16; goto do_SseShift;
|
|
case Iop_SarN32x4: op = Xsse_SAR32; goto do_SseShift;
|
|
case Iop_ShrN16x8: op = Xsse_SHR16; goto do_SseShift;
|
|
case Iop_ShrN32x4: op = Xsse_SHR32; goto do_SseShift;
|
|
case Iop_ShrN64x2: op = Xsse_SHR64; goto do_SseShift;
|
|
do_SseShift: {
|
|
HReg greg = iselVecExpr(env, e->Iex.Binop.arg1);
|
|
X86RMI* rmi = iselIntExpr_RMI(env, e->Iex.Binop.arg2);
|
|
X86AMode* esp0 = X86AMode_IR(0, hregX86_ESP());
|
|
HReg ereg = newVRegV(env);
|
|
HReg dst = newVRegV(env);
|
|
REQUIRE_SSE2;
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
|
|
addInstr(env, X86Instr_Push(X86RMI_Imm(0)));
|
|
addInstr(env, X86Instr_Push(rmi));
|
|
addInstr(env, X86Instr_SseLdSt(True/*load*/, ereg, esp0));
|
|
addInstr(env, mk_vMOVsd_RR(greg, dst));
|
|
addInstr(env, X86Instr_SseReRg(op, ereg, dst));
|
|
add_to_esp(env, 16);
|
|
return dst;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
} /* switch (e->Iex.Binop.op) */
|
|
} /* if (e->tag == Iex_Binop) */
|
|
|
|
if (e->tag == Iex_Mux0X) {
|
|
HReg r8 = iselIntExpr_R(env, e->Iex.Mux0X.cond);
|
|
HReg rX = iselVecExpr(env, e->Iex.Mux0X.exprX);
|
|
HReg r0 = iselVecExpr(env, e->Iex.Mux0X.expr0);
|
|
HReg dst = newVRegV(env);
|
|
addInstr(env, mk_vMOVsd_RR(rX,dst));
|
|
addInstr(env, X86Instr_Test32(0xFF, r8));
|
|
addInstr(env, X86Instr_SseCMov(Xcc_Z,r0,dst));
|
|
return dst;
|
|
}
|
|
|
|
vec_fail:
|
|
vex_printf("iselVecExpr (subarch = %s): can't reduce\n",
|
|
LibVEX_ppVexSubArch(env->subarch));
|
|
ppIRExpr(e);
|
|
vpanic("iselVecExpr_wrk");
|
|
|
|
# undef REQUIRE_SSE1
|
|
# undef REQUIRE_SSE2
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Statements ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
static void iselStmt ( ISelEnv* env, IRStmt* stmt )
|
|
{
|
|
if (vex_traceflags & VEX_TRACE_VCODE) {
|
|
vex_printf("\n-- ");
|
|
ppIRStmt(stmt);
|
|
vex_printf("\n");
|
|
}
|
|
|
|
switch (stmt->tag) {
|
|
|
|
/* --------- STORE --------- */
|
|
case Ist_STle: {
|
|
X86AMode* am;
|
|
IRType tya = typeOfIRExpr(env->type_env, stmt->Ist.STle.addr);
|
|
IRType tyd = typeOfIRExpr(env->type_env, stmt->Ist.STle.data);
|
|
vassert(tya == Ity_I32);
|
|
am = iselIntExpr_AMode(env, stmt->Ist.STle.addr);
|
|
if (tyd == Ity_I32) {
|
|
X86RI* ri = iselIntExpr_RI(env, stmt->Ist.STle.data);
|
|
addInstr(env, X86Instr_Alu32M(Xalu_MOV,ri,am));
|
|
return;
|
|
}
|
|
if (tyd == Ity_I8 || tyd == Ity_I16) {
|
|
HReg r = iselIntExpr_R(env, stmt->Ist.STle.data);
|
|
addInstr(env, X86Instr_Store(tyd==Ity_I8 ? 1 : 2,
|
|
r,am));
|
|
return;
|
|
}
|
|
if (tyd == Ity_F64) {
|
|
HReg r = iselDblExpr(env, stmt->Ist.STle.data);
|
|
addInstr(env, X86Instr_FpLdSt(False/*store*/, 8, r, am));
|
|
return;
|
|
}
|
|
if (tyd == Ity_F32) {
|
|
HReg r = iselFltExpr(env, stmt->Ist.STle.data);
|
|
addInstr(env, X86Instr_FpLdSt(False/*store*/, 4, r, am));
|
|
return;
|
|
}
|
|
if (tyd == Ity_I64) {
|
|
HReg vHi, vLo, rA;
|
|
iselInt64Expr(&vHi, &vLo, env, stmt->Ist.STle.data);
|
|
rA = iselIntExpr_R(env, stmt->Ist.STle.addr);
|
|
addInstr(env, X86Instr_Alu32M(
|
|
Xalu_MOV, X86RI_Reg(vLo), X86AMode_IR(0, rA)));
|
|
addInstr(env, X86Instr_Alu32M(
|
|
Xalu_MOV, X86RI_Reg(vHi), X86AMode_IR(4, rA)));
|
|
return;
|
|
}
|
|
if (tyd == Ity_V128) {
|
|
HReg r = iselVecExpr(env, stmt->Ist.STle.data);
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, r, am));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- PUT --------- */
|
|
case Ist_Put: {
|
|
IRType ty = typeOfIRExpr(env->type_env, stmt->Ist.Put.data);
|
|
if (ty == Ity_I32) {
|
|
/* We're going to write to memory, so compute the RHS into an
|
|
X86RI. */
|
|
X86RI* ri = iselIntExpr_RI(env, stmt->Ist.Put.data);
|
|
addInstr(env,
|
|
X86Instr_Alu32M(
|
|
Xalu_MOV,
|
|
ri,
|
|
X86AMode_IR(stmt->Ist.Put.offset,hregX86_EBP())
|
|
));
|
|
return;
|
|
}
|
|
if (ty == Ity_I8 || ty == Ity_I16) {
|
|
HReg r = iselIntExpr_R(env, stmt->Ist.Put.data);
|
|
addInstr(env, X86Instr_Store(
|
|
ty==Ity_I8 ? 1 : 2,
|
|
r,
|
|
X86AMode_IR(stmt->Ist.Put.offset,
|
|
hregX86_EBP())));
|
|
return;
|
|
}
|
|
if (ty == Ity_I64) {
|
|
HReg vHi, vLo;
|
|
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
|
|
X86AMode* am4 = advance4(am);
|
|
iselInt64Expr(&vHi, &vLo, env, stmt->Ist.Put.data);
|
|
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vLo), am ));
|
|
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(vHi), am4 ));
|
|
return;
|
|
}
|
|
if (ty == Ity_V128) {
|
|
HReg vec = iselVecExpr(env, stmt->Ist.Put.data);
|
|
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
|
|
addInstr(env, X86Instr_SseLdSt(False/*store*/, vec, am));
|
|
return;
|
|
}
|
|
if (ty == Ity_F32) {
|
|
HReg f32 = iselFltExpr(env, stmt->Ist.Put.data);
|
|
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
|
|
set_FPU_rounding_default(env); /* paranoia */
|
|
addInstr(env, X86Instr_FpLdSt( False/*store*/, 4, f32, am ));
|
|
return;
|
|
}
|
|
if (ty == Ity_F64) {
|
|
HReg f64 = iselDblExpr(env, stmt->Ist.Put.data);
|
|
X86AMode* am = X86AMode_IR(stmt->Ist.Put.offset, hregX86_EBP());
|
|
set_FPU_rounding_default(env); /* paranoia */
|
|
addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, f64, am ));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- Indexed PUT --------- */
|
|
case Ist_PutI: {
|
|
X86AMode* am
|
|
= genGuestArrayOffset(
|
|
env, stmt->Ist.PutI.descr,
|
|
stmt->Ist.PutI.ix, stmt->Ist.PutI.bias );
|
|
|
|
IRType ty = typeOfIRExpr(env->type_env, stmt->Ist.PutI.data);
|
|
if (ty == Ity_F64) {
|
|
HReg val = iselDblExpr(env, stmt->Ist.PutI.data);
|
|
addInstr(env, X86Instr_FpLdSt( False/*store*/, 8, val, am ));
|
|
return;
|
|
}
|
|
if (ty == Ity_I8) {
|
|
HReg r = iselIntExpr_R(env, stmt->Ist.PutI.data);
|
|
addInstr(env, X86Instr_Store( 1, r, am ));
|
|
return;
|
|
}
|
|
if (ty == Ity_I64) {
|
|
HReg rHi, rLo;
|
|
X86AMode* am4 = advance4(am);
|
|
iselInt64Expr(&rHi, &rLo, env, stmt->Ist.PutI.data);
|
|
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rLo), am ));
|
|
addInstr(env, X86Instr_Alu32M( Xalu_MOV, X86RI_Reg(rHi), am4 ));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- TMP --------- */
|
|
case Ist_Tmp: {
|
|
IRTemp tmp = stmt->Ist.Tmp.tmp;
|
|
IRType ty = typeOfIRTemp(env->type_env, tmp);
|
|
if (ty == Ity_I32 || ty == Ity_I16 || ty == Ity_I8) {
|
|
X86RMI* rmi = iselIntExpr_RMI(env, stmt->Ist.Tmp.data);
|
|
HReg dst = lookupIRTemp(env, tmp);
|
|
addInstr(env, X86Instr_Alu32R(Xalu_MOV,rmi,dst));
|
|
return;
|
|
}
|
|
if (ty == Ity_I64) {
|
|
HReg rHi, rLo, dstHi, dstLo;
|
|
iselInt64Expr(&rHi,&rLo, env, stmt->Ist.Tmp.data);
|
|
lookupIRTemp64( &dstHi, &dstLo, env, tmp);
|
|
addInstr(env, mk_iMOVsd_RR(rHi,dstHi) );
|
|
addInstr(env, mk_iMOVsd_RR(rLo,dstLo) );
|
|
return;
|
|
}
|
|
if (ty == Ity_I1) {
|
|
X86CondCode cond = iselCondCode(env, stmt->Ist.Tmp.data);
|
|
HReg dst = lookupIRTemp(env, tmp);
|
|
addInstr(env, X86Instr_Set32(cond, dst));
|
|
return;
|
|
}
|
|
if (ty == Ity_F64) {
|
|
HReg dst = lookupIRTemp(env, tmp);
|
|
HReg src = iselDblExpr(env, stmt->Ist.Tmp.data);
|
|
addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
|
|
return;
|
|
}
|
|
if (ty == Ity_F32) {
|
|
HReg dst = lookupIRTemp(env, tmp);
|
|
HReg src = iselFltExpr(env, stmt->Ist.Tmp.data);
|
|
addInstr(env, X86Instr_FpUnary(Xfp_MOV,src,dst));
|
|
return;
|
|
}
|
|
if (ty == Ity_V128) {
|
|
HReg dst = lookupIRTemp(env, tmp);
|
|
HReg src = iselVecExpr(env, stmt->Ist.Tmp.data);
|
|
addInstr(env, mk_vMOVsd_RR(src,dst));
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- Call to DIRTY helper --------- */
|
|
case Ist_Dirty: {
|
|
IRType retty;
|
|
IRDirty* d = stmt->Ist.Dirty.details;
|
|
Bool passBBP = False;
|
|
|
|
if (d->nFxState == 0)
|
|
vassert(!d->needsBBP);
|
|
passBBP = d->nFxState > 0 && d->needsBBP;
|
|
|
|
/* Marshal args, do the call, clear stack. */
|
|
doHelperCall( env, passBBP, d->guard, d->cee, d->args );
|
|
|
|
/* Now figure out what to do with the returned value, if any. */
|
|
if (d->tmp == IRTemp_INVALID)
|
|
/* No return value. Nothing to do. */
|
|
return;
|
|
|
|
retty = typeOfIRTemp(env->type_env, d->tmp);
|
|
if (retty == Ity_I64) {
|
|
HReg dstHi, dstLo;
|
|
/* The returned value is in %edx:%eax. Park it in the
|
|
register-pair associated with tmp. */
|
|
lookupIRTemp64( &dstHi, &dstLo, env, d->tmp);
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EDX(),dstHi) );
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dstLo) );
|
|
return;
|
|
}
|
|
if (retty == Ity_I32 || retty == Ity_I16 || retty == Ity_I8) {
|
|
/* The returned value is in %eax. Park it in the register
|
|
associated with tmp. */
|
|
HReg dst = lookupIRTemp(env, d->tmp);
|
|
addInstr(env, mk_iMOVsd_RR(hregX86_EAX(),dst) );
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* --------- MEM FENCE --------- */
|
|
case Ist_MFence:
|
|
addInstr(env, X86Instr_MFence(env->subarch));
|
|
return;
|
|
|
|
/* --------- INSTR MARK --------- */
|
|
/* Doesn't generate any executable code ... */
|
|
case Ist_IMark:
|
|
return;
|
|
|
|
/* --------- EXIT --------- */
|
|
case Ist_Exit: {
|
|
X86RI* dst;
|
|
X86CondCode cc;
|
|
if (stmt->Ist.Exit.dst->tag != Ico_U32)
|
|
vpanic("isel_x86: Ist_Exit: dst is not a 32-bit value");
|
|
dst = iselIntExpr_RI(env, IRExpr_Const(stmt->Ist.Exit.dst));
|
|
cc = iselCondCode(env,stmt->Ist.Exit.guard);
|
|
addInstr(env, X86Instr_Goto(stmt->Ist.Exit.jk, cc, dst));
|
|
return;
|
|
}
|
|
|
|
default: break;
|
|
}
|
|
ppIRStmt(stmt);
|
|
vpanic("iselStmt");
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- ISEL: Basic block terminators (Nexts) ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
static void iselNext ( ISelEnv* env, IRExpr* next, IRJumpKind jk )
|
|
{
|
|
X86RI* ri;
|
|
if (vex_traceflags & VEX_TRACE_VCODE) {
|
|
vex_printf("\n-- goto {");
|
|
ppIRJumpKind(jk);
|
|
vex_printf("} ");
|
|
ppIRExpr(next);
|
|
vex_printf("\n");
|
|
}
|
|
ri = iselIntExpr_RI(env, next);
|
|
addInstr(env, X86Instr_Goto(jk, Xcc_ALWAYS,ri));
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------*/
|
|
/*--- Insn selector top-level ---*/
|
|
/*---------------------------------------------------------*/
|
|
|
|
/* Translate an entire BB to x86 code. */
|
|
|
|
HInstrArray* iselBB_X86 ( IRBB* bb, VexSubArch subarch_host )
|
|
{
|
|
Int i, j;
|
|
HReg hreg, hregHI;
|
|
ISelEnv* env;
|
|
|
|
/* sanity ... */
|
|
vassert(subarch_host == VexSubArchX86_sse0
|
|
|| subarch_host == VexSubArchX86_sse1
|
|
|| subarch_host == VexSubArchX86_sse2);
|
|
|
|
/* Make up an initial environment to use. */
|
|
env = LibVEX_Alloc(sizeof(ISelEnv));
|
|
env->vreg_ctr = 0;
|
|
|
|
/* Set up output code array. */
|
|
env->code = newHInstrArray();
|
|
|
|
/* Copy BB's type env. */
|
|
env->type_env = bb->tyenv;
|
|
|
|
/* Make up an IRTemp -> virtual HReg mapping. This doesn't
|
|
change as we go along. */
|
|
env->n_vregmap = bb->tyenv->types_used;
|
|
env->vregmap = LibVEX_Alloc(env->n_vregmap * sizeof(HReg));
|
|
env->vregmapHI = LibVEX_Alloc(env->n_vregmap * sizeof(HReg));
|
|
|
|
/* and finally ... */
|
|
env->subarch = subarch_host;
|
|
|
|
/* For each IR temporary, allocate a suitably-kinded virtual
|
|
register. */
|
|
j = 0;
|
|
for (i = 0; i < env->n_vregmap; i++) {
|
|
hregHI = hreg = INVALID_HREG;
|
|
switch (bb->tyenv->types[i]) {
|
|
case Ity_I1:
|
|
case Ity_I8:
|
|
case Ity_I16:
|
|
case Ity_I32: hreg = mkHReg(j++, HRcInt32, True); break;
|
|
case Ity_I64: hreg = mkHReg(j++, HRcInt32, True);
|
|
hregHI = mkHReg(j++, HRcInt32, True); break;
|
|
case Ity_F32:
|
|
case Ity_F64: hreg = mkHReg(j++, HRcFlt64, True); break;
|
|
case Ity_V128: hreg = mkHReg(j++, HRcVec128, True); break;
|
|
default: ppIRType(bb->tyenv->types[i]);
|
|
vpanic("iselBB: IRTemp type");
|
|
}
|
|
env->vregmap[i] = hreg;
|
|
env->vregmapHI[i] = hregHI;
|
|
}
|
|
env->vreg_ctr = j;
|
|
|
|
/* Ok, finally we can iterate over the statements. */
|
|
for (i = 0; i < bb->stmts_used; i++)
|
|
if (bb->stmts[i])
|
|
iselStmt(env,bb->stmts[i]);
|
|
|
|
iselNext(env,bb->next,bb->jumpkind);
|
|
|
|
/* record the number of vregs we used. */
|
|
env->code->n_vregs = env->vreg_ctr;
|
|
return env->code;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------*/
|
|
/*--- end host-x86/isel.c ---*/
|
|
/*---------------------------------------------------------------*/
|