ftmemsim-valgrind/drd/tests/unit_bitmap.c
Carl Love 914f75de32 This commit is for Bugzilla 334384. The Bugzilla contains patch 1 of 3
to add PPC64 LE support.  The other two patches can be found in Bugzillas
334834 and 334836.  The commit does not have a VEX commit associated with it.

POWER PC, add initial Little Endian support

The IBM POWER processor now supports both Big Endian and Little Endian.
This patch renames the #defines with the name ppc64 to ppc64be for the BE
specific code.  This patch adds the Little Endian #define ppc64le to the

Additionally, a few functions are renamed to remove BE from the name if the
function is used by BE and LE. Functions that are BE specific have BE put
in the name.

The goals of this patch is to make sure #defines, function names and
variables consistently use PPC64/ppc64 if it refers to BE and LE,
PPC64BE/ppc64be if it is specific to BE, PPC64LE/ppc64le if it is LE
specific.  The patch does not break the code for PPC64 Big Endian.

The test files memcheck/tests/atomic_incs.c, tests/power_insn_available.c
and tests/power_insn_available.c are also updated to the new #define
definition for PPC64 BE.

Signed-off-by: Carl Love <carll@us.ibm.com>


git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14238
2014-08-07 23:17:29 +00:00

359 lines
11 KiB
C

/** @brief Unit-test for DRD's bitmap implementation. */
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "coregrind/m_xarray.c"
#include "coregrind/m_poolalloc.c"
#include "coregrind/m_oset.c"
#include "drd/drd_bitmap.c"
#include "drd/pub_drd_bitmap.h"
#ifndef MIN
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#endif
#ifndef MAX
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#endif
/* Replacements for Valgrind core functionality. */
void* VG_(malloc)(const HChar* cc, SizeT nbytes)
{ return malloc(nbytes); }
void VG_(free)(void* p)
{ return free(p); }
void VG_(assert_fail)(Bool isCore, const HChar* assertion, const HChar* file,
Int line, const HChar* function, const HChar* format,
...)
{
fprintf(stderr,
"%s:%u: %s%sAssertion `%s' failed.\n",
file,
line,
function ? (char*)function : "",
function ? ": " : "",
assertion);
fflush(stdout);
fflush(stderr);
abort();
}
void* VG_(memset)(void *s, Int c, SizeT sz)
{ return memset(s, c, sz); }
void* VG_(memcpy)(void *d, const void *s, SizeT sz)
{ return memcpy(d, s, sz); }
void* VG_(memmove)(void *d, const void *s, SizeT sz)
{ return memmove(d, s, sz); }
Int VG_(memcmp)(const void* s1, const void* s2, SizeT n)
{ return memcmp(s1, s2, n); }
UInt VG_(printf)(const HChar *format, ...)
{ UInt ret; va_list vargs; va_start(vargs, format); ret = vprintf(format, vargs); va_end(vargs); return ret; }
UInt VG_(message)(VgMsgKind kind, const HChar* format, ...)
{ UInt ret; va_list vargs; va_start(vargs, format); ret = vprintf(format, vargs); va_end(vargs); printf("\n"); return ret; }
Bool DRD_(is_suppressed)(const Addr a1, const Addr a2)
{ assert(0); }
void VG_(vcbprintf)(void(*char_sink)(HChar, void* opaque),
void* opaque,
const HChar* format, va_list vargs)
{ assert(0); }
void VG_(ssort)( void* base, SizeT nmemb, SizeT size,
Int (*compar)(const void*, const void*) )
{ assert(0); }
/* Actual unit test */
static int s_verbose = 1;
static
struct { Addr address; SizeT size; BmAccessTypeT access_type; }
s_test1_args[] = {
{ 0, 0, eLoad },
{ 0, 1, eLoad },
{ 666, 4, eLoad },
{ 667, 2, eStore },
{ 1024, 1, eStore },
{ 0xffffULL, 1, eStore },
{ 0x0001ffffULL, 1, eLoad },
{ 0x00ffffffULL, 1, eLoad },
{ 0xffffffffULL - (((1 << ADDR_LSB_BITS) + 1) << ADDR_IGNORED_BITS),
1, eStore },
#if defined(VGP_amd64_linux) || defined(VGP_ppc64be_linux) \
|| defined(VGP_ppc64le_linux)
{ 0xffffffffULL - (1 << ADDR_LSB_BITS << ADDR_IGNORED_BITS),
1, eStore },
{ 0xffffffffULL, 1, eStore },
{ 0x100000000ULL, 1, eStore },
{ -2ULL - (1 << ADDR_LSB_BITS << ADDR_IGNORED_BITS),
1, eStore },
#endif
};
/**
* Compare two bitmaps and if different, print the differences.
*/
int bm_equal_print_diffs(struct bitmap* bm1, struct bitmap* bm2)
{
int equal;
equal = DRD_(bm_equal)(bm1, bm2);
if (s_verbose && ! equal)
{
unsigned i;
VG_(printf)("Bitmaps are different.\n");
for (i = 0; i < 0x10000; i++)
{
if (DRD_(bm_has_1)(bm1, i, eLoad) != DRD_(bm_has_1)(bm2, i, eLoad)
|| DRD_(bm_has_1)(bm1, i, eStore) != DRD_(bm_has_1)(bm2, i, eStore))
{
printf("0x%x %c %c %c %c\n",
i,
DRD_(bm_has_1)(bm1, i, eLoad) ? 'R' : ' ',
DRD_(bm_has_1)(bm1, i, eStore) ? 'W' : ' ',
DRD_(bm_has_1)(bm2, i, eLoad) ? 'R' : ' ',
DRD_(bm_has_1)(bm2, i, eStore) ? 'W' : ' '
);
}
}
fflush(stdout);
}
return equal;
}
void bm_test1(void)
{
struct bitmap* bm;
struct bitmap* bm2;
unsigned i, j;
bm = DRD_(bm_new)();
for (i = 0; i < sizeof(s_test1_args)/sizeof(s_test1_args[0]); i++)
{
DRD_(bm_access_range)(bm,
s_test1_args[i].address,
s_test1_args[i].address + s_test1_args[i].size,
s_test1_args[i].access_type);
}
for (i = 0; i < sizeof(s_test1_args)/sizeof(s_test1_args[0]); i++)
{
for (j = 0;
first_address_with_higher_lsb(j) <= s_test1_args[i].size;
j = first_address_with_higher_lsb(j))
{
tl_assert(DRD_(bm_has_1)(bm,
s_test1_args[i].address + j,
s_test1_args[i].access_type));
}
}
bm2 = DRD_(bm_new)();
DRD_(bm_merge2)(bm2, bm);
DRD_(bm_merge2)(bm2, bm);
assert(bm_equal_print_diffs(bm2, bm));
if (s_verbose)
VG_(printf)("Deleting bitmap bm\n");
DRD_(bm_delete)(bm);
if (s_verbose)
VG_(printf)("Deleting bitmap bm2\n");
DRD_(bm_delete)(bm2);
}
/** Test whether bm_equal() works correctly. */
void bm_test2()
{
struct bitmap* bm1;
struct bitmap* bm2;
bm1 = DRD_(bm_new)();
bm2 = DRD_(bm_new)();
DRD_(bm_access_load_1)(bm1, 7);
DRD_(bm_access_load_1)(bm2, make_address(1, 0) + 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_access_load_1)(bm2, 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_access_store_1)(bm1, make_address(1, 0) + 7);
assert(! DRD_(bm_equal)(bm1, bm2));
assert(! DRD_(bm_equal)(bm2, bm1));
DRD_(bm_delete)(bm2);
DRD_(bm_delete)(bm1);
}
/** Torture test of the functions that set or clear a range of bits. */
void bm_test3(const int outer_loop_step, const int inner_loop_step)
{
unsigned i, j;
struct bitmap* bm1;
struct bitmap* bm2;
const Addr lb = make_address(2, 0) - 2 * BITS_PER_UWORD;
const Addr ub = make_address(2, 0) + 2 * BITS_PER_UWORD;
assert(outer_loop_step >= 1);
assert((outer_loop_step % ADDR_GRANULARITY) == 0);
assert(inner_loop_step >= 1);
assert((inner_loop_step % ADDR_GRANULARITY) == 0);
bm1 = DRD_(bm_new)();
bm2 = DRD_(bm_new)();
for (i = lb; i < ub; i += outer_loop_step)
{
for (j = i + ADDR_GRANULARITY; j < ub; j += inner_loop_step)
{
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_clear_load)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_1)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_2)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_4)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_8)(bm1, i);
DRD_(bm_clear_load)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_range_store)(bm1, i, j);
DRD_(bm_clear_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_1)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_2)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_4)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_store_8)(bm1, i);
DRD_(bm_clear_store)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
DRD_(bm_clear)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_1)(bm1, i);
DRD_(bm_access_store_1)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(1, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_2)(bm1, i);
DRD_(bm_access_store_2)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(2, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_4)(bm1, i);
DRD_(bm_access_store_4)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(4, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_access_load_8)(bm1, i);
DRD_(bm_access_store_8)(bm1, i);
DRD_(bm_clear)(bm1, i, i + MAX(8, ADDR_GRANULARITY));
assert(bm_equal_print_diffs(bm1, bm2));
}
}
DRD_(bm_access_range_load)(bm1, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_store)(bm1, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_load)(bm2, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
DRD_(bm_access_range_store)(bm2, 0, make_address(2, 0) + 2 * BITS_PER_UWORD);
for (i = make_address(1, 0) - 2 * BITS_PER_UWORD;
i < make_address(1, 0) + 2 * BITS_PER_UWORD;
i += outer_loop_step)
{
for (j = i + 1; j < ub; j += inner_loop_step)
{
DRD_(bm_clear_load)(bm1, i, j);
DRD_(bm_access_range_load)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+1);
DRD_(bm_access_load_1)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+2);
DRD_(bm_access_load_2)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+4);
DRD_(bm_access_load_4)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_load)(bm1, i, i+8);
DRD_(bm_access_load_8)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+1);
DRD_(bm_access_store_1)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+2);
DRD_(bm_access_store_2)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+4);
DRD_(bm_access_store_4)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear_store)(bm1, i, i+8);
DRD_(bm_access_store_8)(bm1, i);
assert(bm_equal_print_diffs(bm1, bm2));
DRD_(bm_clear)(bm1, i, j);
DRD_(bm_access_range_load)(bm1, i, j);
DRD_(bm_access_range_store)(bm1, i, j);
assert(bm_equal_print_diffs(bm1, bm2));
}
}
DRD_(bm_delete)(bm2);
DRD_(bm_delete)(bm1);
}
int main(int argc, char** argv)
{
int outer_loop_step = ADDR_GRANULARITY;
int inner_loop_step = ADDR_GRANULARITY;
int optchar;
while ((optchar = getopt(argc, argv, "s:t:q")) != EOF)
{
switch (optchar)
{
case 's':
outer_loop_step = atoi(optarg);
break;
case 't':
inner_loop_step = atoi(optarg);
break;
case 'q':
s_verbose = 0;
break;
default:
fprintf(stderr,
"Usage: %s [-s<outer_loop_step>] [-t<inner_loop_step>] [-q].\n",
argv[0]);
break;
}
}
fprintf(stderr, "Start of DRD BM unit test.\n");
DRD_(bm_module_init)();
bm_test1();
bm_test2();
bm_test3(outer_loop_step, inner_loop_step);
DRD_(bm_module_cleanup)();
fprintf(stderr, "End of DRD BM unit test.\n");
return 0;
}