Files
ftmemsim-valgrind/massif/ms_main.c
Julian Seward cc8ccbbfb4 This commit merges in changes from branches/ASPACEM (specifically,
changes from r4341 through r4787 inclusive).  That branch is now dead.
Please do not commit anything else to it.

For the most part the merge was not troublesome.  The main areas of
uncertainty are:

- build system: I had to import by hand Makefile.core-AM_CPPFLAGS.am
  and include it in a couple of places.  Building etc seems to still
  work, but I haven't tried building the documentation.

- syscall wrappers: Following analysis by Greg & Nick, a whole lot of
  stuff was moved from -generic to -linux after the branch was created.
  I think that is satisfactorily glued back together now.

- Regtests: although this appears to work, no .out files appear, which
  is strange, and makes it hard to diagnose regtest failures.  In
  particular memcheck/tests/x86/scalar.stderr.exp remains in a 
  conflicted state.

- amd64 is broken (slightly), and ppc32 will be unbuildable.  I'll
  attend to the former shortly.



git-svn-id: svn://svn.valgrind.org/valgrind/trunk@4789
2005-09-27 19:20:21 +00:00

1837 lines
59 KiB
C

/*--------------------------------------------------------------------*/
/*--- Massif: a heap profiling tool. ms_main.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Massif, a Valgrind tool for profiling memory
usage of programs.
Copyright (C) 2003-2005 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
// Memory profiler. Produces a graph, gives lots of information about
// allocation contexts, in terms of space.time values (ie. area under the
// graph). Allocation context information is hierarchical, and can thus
// be inspected step-wise to an appropriate depth. See comments on data
// structures below for more info on how things work.
#include "pub_tool_basics.h"
#include "pub_tool_aspacemgr.h"
#include "pub_tool_debuginfo.h"
#include "pub_tool_hashtable.h"
#include "pub_tool_libcbase.h"
#include "pub_tool_libcassert.h"
#include "pub_tool_libcfile.h"
#include "pub_tool_libcprint.h"
#include "pub_tool_libcproc.h"
#include "pub_tool_machine.h"
#include "pub_tool_mallocfree.h"
#include "pub_tool_options.h"
#include "pub_tool_profile.h"
#include "pub_tool_replacemalloc.h"
#include "pub_tool_stacktrace.h"
#include "pub_tool_tooliface.h"
#include "pub_tool_clientstate.h"
#include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK
/*------------------------------------------------------------*/
/*--- Overview of operation ---*/
/*------------------------------------------------------------*/
// Heap blocks are tracked, and the amount of space allocated by various
// contexts (ie. lines of code, more or less) is also tracked.
// Periodically, a census is taken, and the amount of space used, at that
// point, by the most significant (highly allocating) contexts is recorded.
// Census start off frequently, but are scaled back as the program goes on,
// so that there are always a good number of them. At the end, overall
// spacetimes for different contexts (of differing levels of precision) is
// calculated, the graph is printed, and the text giving spacetimes for the
// increasingly precise contexts is given.
//
// Measures the following:
// - heap blocks
// - heap admin bytes
// - stack(s)
// - code (code segments loaded at startup, and loaded with mmap)
// - data (data segments loaded at startup, and loaded/created with mmap,
// and brk()d segments)
/*------------------------------------------------------------*/
/*--- Main types ---*/
/*------------------------------------------------------------*/
// An XPt represents an "execution point", ie. a code address. Each XPt is
// part of a tree of XPts (an "execution tree", or "XTree"). Each
// top-to-bottom path through an XTree gives an execution context ("XCon"),
// and is equivalent to a traditional Valgrind ExeContext.
//
// The XPt at the top of an XTree (but below "alloc_xpt") is called a
// "top-XPt". The XPts are the bottom of an XTree (leaf nodes) are
// "bottom-XPTs". The number of XCons in an XTree is equal to the number of
// bottom-XPTs in that XTree.
//
// All XCons have the same top-XPt, "alloc_xpt", which represents all
// allocation functions like malloc(). It's a bit of a fake XPt, though,
// and is only used because it makes some of the code simpler.
//
// XTrees are bi-directional.
//
// > parent < Example: if child1() calls parent() and child2()
// / | \ also calls parent(), and parent() calls malloc(),
// | / \ | the XTree will look like this.
// | v v |
// child1 child2
typedef struct _XPt XPt;
struct _XPt {
Addr ip; // code address
// Bottom-XPts: space for the precise context.
// Other XPts: space of all the descendent bottom-XPts.
// Nb: this value goes up and down as the program executes.
UInt curr_space;
// An approximate space.time calculation used along the way for selecting
// which contexts to include at each census point.
// !!! top-XPTs only !!!
ULong approx_ST;
// exact_ST_dbld is an exact space.time calculation done at the end, and
// used in the results.
// Note that it is *doubled*, to avoid rounding errors.
// !!! not used for 'alloc_xpt' !!!
ULong exact_ST_dbld;
// n_children and max_children are integers; a very big program might
// have more than 65536 allocation points (Konqueror startup has 1800).
XPt* parent; // pointer to parent XPt
UInt n_children; // number of children
UInt max_children; // capacity of children array
XPt** children; // pointers to children XPts
};
// Each census snapshots the most significant XTrees, each XTree having a
// top-XPt as its root. The 'curr_space' element for each XPt is recorded
// in the snapshot. The snapshot contains all the XTree's XPts, not in a
// tree structure, but flattened into an array. This flat snapshot is used
// at the end for computing exact_ST_dbld for each XPt.
//
// Graph resolution, x-axis: no point having more than about 200 census
// x-points; you can't see them on the graph. Therefore:
//
// - do a census every 1 ms for first 200 --> 200, all (200 ms)
// - halve (drop half of them) --> 100, every 2nd (200 ms)
// - do a census every 2 ms for next 200 --> 200, every 2nd (400 ms)
// - halve --> 100, every 4th (400 ms)
// - do a census every 4 ms for next 400 --> 200, every 4th (800 ms)
// - etc.
//
// This isn't exactly right, because we actually drop (N/2)-1 when halving,
// but it shows the basic idea.
#define MAX_N_CENSI 200 // Keep it even, for simplicity
// Graph resolution, y-axis: hp2ps only draws the 19 biggest (in space-time)
// bands, rest get lumped into OTHERS. I only print the top N
// (cumulative-so-far space-time) at each point. N should be a bit bigger
// than 19 in case the cumulative space-time doesn't fit with the eventual
// space-time computed by hp2ps (but it should be close if the samples are
// evenly spread, since hp2ps does an approximate per-band space-time
// calculation that just sums the totals; ie. it assumes all samples are
// the same distance apart).
#define MAX_SNAPSHOTS 32
typedef
struct {
XPt* xpt;
UInt space;
}
XPtSnapshot;
// An XTree snapshot is stored as an array of of XPt snapshots.
typedef XPtSnapshot* XTreeSnapshot;
typedef
struct {
Int ms_time; // Int: must allow -1
XTreeSnapshot xtree_snapshots[MAX_SNAPSHOTS+1]; // +1 for zero-termination
UInt others_space;
UInt heap_admin_space;
UInt stacks_space;
}
Census;
// Metadata for heap blocks. Each one contains a pointer to a bottom-XPt,
// which is a foothold into the XCon at which it was allocated. From
// HP_Chunks, XPt 'space' fields are incremented (at allocation) and
// decremented (at deallocation).
//
// Nb: first two fields must match core's VgHashNode.
typedef
struct _HP_Chunk {
struct _HP_Chunk* next;
Addr data; // Ptr to actual block
SizeT size; // Size requested
XPt* where; // Where allocated; bottom-XPt
}
HP_Chunk;
/*------------------------------------------------------------*/
/*--- Profiling events ---*/
/*------------------------------------------------------------*/
typedef
enum {
VgpGetXPt = VgpFini+1,
VgpGetXPtSearch,
VgpCensus,
VgpCensusHeap,
VgpCensusSnapshot,
VgpCensusTreeSize,
VgpUpdateXCon,
VgpCalcSpacetime2,
VgpPrintHp,
VgpPrintXPts,
}
VgpToolCC;
/*------------------------------------------------------------*/
/*--- Statistics ---*/
/*------------------------------------------------------------*/
// Konqueror startup, to give an idea of the numbers involved with a biggish
// program, with default depth:
//
// depth=3 depth=40
// - 310,000 allocations
// - 300,000 frees
// - 15,000 XPts 800,000 XPts
// - 1,800 top-XPts
static UInt n_xpts = 0;
static UInt n_bot_xpts = 0;
static UInt n_allocs = 0;
static UInt n_zero_allocs = 0;
static UInt n_frees = 0;
static UInt n_children_reallocs = 0;
static UInt n_snapshot_frees = 0;
static UInt n_halvings = 0;
static UInt n_real_censi = 0;
static UInt n_fake_censi = 0;
static UInt n_attempted_censi = 0;
/*------------------------------------------------------------*/
/*--- Globals ---*/
/*------------------------------------------------------------*/
#define FILENAME_LEN 256
#define SPRINTF(zz_buf, fmt, args...) \
do { Int len = VG_(sprintf)(zz_buf, fmt, ## args); \
VG_(write)(fd, (void*)zz_buf, len); \
} while (0)
#define BUF_LEN 1024 // general purpose
static Char buf [BUF_LEN];
static Char buf2[BUF_LEN];
static Char buf3[BUF_LEN];
static SizeT sigstacks_space = 0; // Current signal stacks space sum
static VgHashTable malloc_list = NULL; // HP_Chunks
static UInt n_heap_blocks = 0;
// Current directory at startup.
static Char base_dir[VKI_PATH_MAX];
#define MAX_ALLOC_FNS 32 // includes the builtin ones
// First few filled in, rest should be zeroed. Zero-terminated vector.
static UInt n_alloc_fns = 11;
static Char* alloc_fns[MAX_ALLOC_FNS] = {
"malloc",
"operator new(unsigned)",
"operator new[](unsigned)",
"operator new(unsigned, std::nothrow_t const&)",
"operator new[](unsigned, std::nothrow_t const&)",
"__builtin_new",
"__builtin_vec_new",
"calloc",
"realloc",
"memalign",
};
/*------------------------------------------------------------*/
/*--- Command line args ---*/
/*------------------------------------------------------------*/
#define MAX_DEPTH 50
typedef
enum {
XText, XHTML,
}
XFormat;
static Bool clo_heap = True;
static UInt clo_heap_admin = 8;
static Bool clo_stacks = True;
static Bool clo_depth = 3;
static XFormat clo_format = XText;
static Bool ms_process_cmd_line_option(Char* arg)
{
VG_BOOL_CLO(arg, "--heap", clo_heap)
else VG_BOOL_CLO(arg, "--stacks", clo_stacks)
else VG_NUM_CLO (arg, "--heap-admin", clo_heap_admin)
else VG_BNUM_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH)
else if (VG_CLO_STREQN(11, arg, "--alloc-fn=")) {
alloc_fns[n_alloc_fns] = & arg[11];
n_alloc_fns++;
if (n_alloc_fns >= MAX_ALLOC_FNS) {
VG_(printf)("Too many alloc functions specified, sorry");
VG_(bad_option)(arg);
}
}
else if (VG_CLO_STREQ(arg, "--format=text"))
clo_format = XText;
else if (VG_CLO_STREQ(arg, "--format=html"))
clo_format = XHTML;
else
return VG_(replacement_malloc_process_cmd_line_option)(arg);
return True;
}
static void ms_print_usage(void)
{
VG_(printf)(
" --heap=no|yes profile heap blocks [yes]\n"
" --heap-admin=<number> average admin bytes per heap block [8]\n"
" --stacks=no|yes profile stack(s) [yes]\n"
" --depth=<number> depth of contexts [3]\n"
" --alloc-fn=<name> specify <fn> as an alloc function [empty]\n"
" --format=text|html format of textual output [text]\n"
);
VG_(replacement_malloc_print_usage)();
}
static void ms_print_debug_usage(void)
{
VG_(replacement_malloc_print_debug_usage)();
}
/*------------------------------------------------------------*/
/*--- Execution contexts ---*/
/*------------------------------------------------------------*/
// Fake XPt representing all allocation functions like malloc(). Acts as
// parent node to all top-XPts.
static XPt* alloc_xpt;
// Cheap allocation for blocks that never need to be freed. Saves about 10%
// for Konqueror startup with --depth=40.
static void* perm_malloc(SizeT n_bytes)
{
static Addr hp = 0; // current heap pointer
static Addr hp_lim = 0; // maximum usable byte in current block
#define SUPERBLOCK_SIZE (1 << 20) // 1 MB
if (hp + n_bytes > hp_lim) {
hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
if (hp == 0)
VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
SUPERBLOCK_SIZE);
hp_lim = hp + SUPERBLOCK_SIZE - 1;
}
hp += n_bytes;
return (void*)(hp - n_bytes);
}
static XPt* new_XPt(Addr ip, XPt* parent, Bool is_bottom)
{
XPt* xpt = perm_malloc(sizeof(XPt));
xpt->ip = ip;
xpt->curr_space = 0;
xpt->approx_ST = 0;
xpt->exact_ST_dbld = 0;
xpt->parent = parent;
// Check parent is not a bottom-XPt
tl_assert(parent == NULL || 0 != parent->max_children);
xpt->n_children = 0;
// If a bottom-XPt, don't allocate space for children. This can be 50%
// or more, although it tends to drop as --depth increases (eg. 10% for
// konqueror with --depth=20).
if ( is_bottom ) {
xpt->max_children = 0;
xpt->children = NULL;
n_bot_xpts++;
} else {
xpt->max_children = 4;
xpt->children = VG_(malloc)( xpt->max_children * sizeof(XPt*) );
}
// Update statistics
n_xpts++;
return xpt;
}
static Bool is_alloc_fn(Addr ip)
{
Int i;
if ( VG_(get_fnname)(ip, buf, BUF_LEN) ) {
for (i = 0; i < n_alloc_fns; i++) {
if (VG_STREQ(buf, alloc_fns[i]))
return True;
}
}
return False;
}
// Returns an XCon, from the bottom-XPt. Nb: the XPt returned must be a
// bottom-XPt now and must always remain a bottom-XPt. We go to some effort
// to ensure this in certain cases. See comments below.
static XPt* get_XCon( ThreadId tid, Bool custom_malloc )
{
// Static to minimise stack size. +1 for added ~0 IP
static Addr ips[MAX_DEPTH + MAX_ALLOC_FNS + 1];
XPt* xpt = alloc_xpt;
UInt n_ips, L, A, B, nC;
UInt overestimate;
Bool reached_bottom;
VGP_PUSHCC(VgpGetXPt);
// Want at least clo_depth non-alloc-fn entries in the snapshot.
// However, because we have 1 or more (an unknown number, at this point)
// alloc-fns ignored, we overestimate the size needed for the stack
// snapshot. Then, if necessary, we repeatedly increase the size until
// it is enough.
overestimate = 2;
while (True) {
n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate );
// Now we add a dummy "unknown" IP at the end. This is only used if we
// run out of IPs before hitting clo_depth. It's done to ensure the
// XPt we return is (now and forever) a bottom-XPt. If the returned XPt
// wasn't a bottom-XPt (now or later) it would cause problems later (eg.
// the parent's approx_ST wouldn't be equal [or almost equal] to the
// total of the childrens' approx_STs).
ips[ n_ips++ ] = ~((Addr)0);
// Skip over alloc functions in ips[].
for (L = 0; is_alloc_fn(ips[L]) && L < n_ips; L++) { }
// Must be at least one alloc function, unless client used
// MALLOCLIKE_BLOCK
if (!custom_malloc) tl_assert(L > 0);
// Should be at least one non-alloc function. If not, try again.
if (L == n_ips) {
overestimate += 2;
if (overestimate > MAX_ALLOC_FNS)
VG_(tool_panic)("No stk snapshot big enough to find non-alloc fns");
} else {
break;
}
}
A = L;
B = n_ips - 1;
reached_bottom = False;
// By this point, the IPs we care about are in ips[A]..ips[B]
// Now do the search/insertion of the XCon. 'L' is the loop counter,
// being the index into ips[].
while (True) {
// Look for IP in xpt's children.
// XXX: linear search, ugh -- about 10% of time for konqueror startup
// XXX: tried cacheing last result, only hit about 4% for konqueror
// Nb: this search hits about 98% of the time for konqueror
VGP_PUSHCC(VgpGetXPtSearch);
// If we've searched/added deep enough, or run out of EIPs, this is
// the bottom XPt.
if (L - A + 1 == clo_depth || L == B)
reached_bottom = True;
nC = 0;
while (True) {
if (nC == xpt->n_children) {
// not found, insert new XPt
tl_assert(xpt->max_children != 0);
tl_assert(xpt->n_children <= xpt->max_children);
// Expand 'children' if necessary
if (xpt->n_children == xpt->max_children) {
xpt->max_children *= 2;
xpt->children = VG_(realloc)( xpt->children,
xpt->max_children * sizeof(XPt*) );
n_children_reallocs++;
}
// Make new XPt for IP, insert in list
xpt->children[ xpt->n_children++ ] =
new_XPt(ips[L], xpt, reached_bottom);
break;
}
if (ips[L] == xpt->children[nC]->ip) break; // found the IP
nC++; // keep looking
}
VGP_POPCC(VgpGetXPtSearch);
// Return found/built bottom-XPt.
if (reached_bottom) {
tl_assert(0 == xpt->children[nC]->n_children); // Must be bottom-XPt
VGP_POPCC(VgpGetXPt);
return xpt->children[nC];
}
// Descend to next level in XTree, the newly found/built non-bottom-XPt
xpt = xpt->children[nC];
L++;
}
}
// Update 'curr_space' of every XPt in the XCon, by percolating upwards.
static void update_XCon(XPt* xpt, Int space_delta)
{
VGP_PUSHCC(VgpUpdateXCon);
tl_assert(True == clo_heap);
tl_assert(0 != space_delta);
tl_assert(NULL != xpt);
tl_assert(0 == xpt->n_children); // must be bottom-XPt
while (xpt != alloc_xpt) {
if (space_delta < 0) tl_assert(xpt->curr_space >= -space_delta);
xpt->curr_space += space_delta;
xpt = xpt->parent;
}
if (space_delta < 0) tl_assert(alloc_xpt->curr_space >= -space_delta);
alloc_xpt->curr_space += space_delta;
VGP_POPCC(VgpUpdateXCon);
}
// Actually want a reverse sort, biggest to smallest
static Int XPt_cmp_approx_ST(void* n1, void* n2)
{
XPt* xpt1 = *(XPt**)n1;
XPt* xpt2 = *(XPt**)n2;
return (xpt1->approx_ST < xpt2->approx_ST ? 1 : -1);
}
static Int XPt_cmp_exact_ST_dbld(void* n1, void* n2)
{
XPt* xpt1 = *(XPt**)n1;
XPt* xpt2 = *(XPt**)n2;
return (xpt1->exact_ST_dbld < xpt2->exact_ST_dbld ? 1 : -1);
}
/*------------------------------------------------------------*/
/*--- A generic Queue ---*/
/*------------------------------------------------------------*/
typedef
struct {
UInt head; // Index of first entry
UInt tail; // Index of final+1 entry, ie. next free slot
UInt max_elems;
void** elems;
}
Queue;
static Queue* construct_queue(UInt size)
{
UInt i;
Queue* q = VG_(malloc)(sizeof(Queue));
q->head = 0;
q->tail = 0;
q->max_elems = size;
q->elems = VG_(malloc)(size * sizeof(void*));
for (i = 0; i < size; i++)
q->elems[i] = NULL;
return q;
}
static void destruct_queue(Queue* q)
{
VG_(free)(q->elems);
VG_(free)(q);
}
static void shuffle(Queue* dest_q, void** old_elems)
{
UInt i, j;
for (i = 0, j = dest_q->head; j < dest_q->tail; i++, j++)
dest_q->elems[i] = old_elems[j];
dest_q->head = 0;
dest_q->tail = i;
for ( ; i < dest_q->max_elems; i++)
dest_q->elems[i] = NULL; // paranoia
}
// Shuffles elements down. If not enough slots free, increase size. (We
// don't wait until we've completely run out of space, because there could
// be lots of shuffling just before that point which would be slow.)
static void adjust(Queue* q)
{
void** old_elems;
tl_assert(q->tail == q->max_elems);
if (q->head < 10) {
old_elems = q->elems;
q->max_elems *= 2;
q->elems = VG_(malloc)(q->max_elems * sizeof(void*));
shuffle(q, old_elems);
VG_(free)(old_elems);
} else {
shuffle(q, q->elems);
}
}
static void enqueue(Queue* q, void* elem)
{
if (q->tail == q->max_elems)
adjust(q);
q->elems[q->tail++] = elem;
}
static Bool is_empty_queue(Queue* q)
{
return (q->head == q->tail);
}
static void* dequeue(Queue* q)
{
if (is_empty_queue(q))
return NULL; // Queue empty
else
return q->elems[q->head++];
}
/*------------------------------------------------------------*/
/*--- malloc() et al replacement wrappers ---*/
/*------------------------------------------------------------*/
// Forward declaration
static void hp_census(void);
static
void* new_block ( ThreadId tid, void* p, SizeT size, SizeT align,
Bool is_zeroed )
{
HP_Chunk* hc;
Bool custom_alloc = (NULL == p);
if (size < 0) return NULL;
VGP_PUSHCC(VgpCliMalloc);
// Update statistics
n_allocs++;
if (0 == size) n_zero_allocs++;
// Allocate and zero if necessary
if (!p) {
p = VG_(cli_malloc)( align, size );
if (!p) {
VGP_POPCC(VgpCliMalloc);
return NULL;
}
if (is_zeroed) VG_(memset)(p, 0, size);
}
// Make new HP_Chunk node, add to malloc_list
hc = VG_(malloc)(sizeof(HP_Chunk));
hc->size = size;
hc->data = (Addr)p;
hc->where = NULL; // paranoia
if (clo_heap) {
hc->where = get_XCon( tid, custom_alloc );
if (0 != size)
update_XCon(hc->where, size);
}
VG_(HT_add_node)(malloc_list, hc);
n_heap_blocks++;
// do a census!
hp_census();
VGP_POPCC(VgpCliMalloc);
return p;
}
static __inline__
void die_block ( void* p, Bool custom_free )
{
HP_Chunk* hc;
VGP_PUSHCC(VgpCliMalloc);
// Update statistics
n_frees++;
// Remove HP_Chunk from malloc_list
hc = VG_(HT_remove)(malloc_list, (UWord)p);
if (NULL == hc)
return; // must have been a bogus free()
tl_assert(n_heap_blocks > 0);
n_heap_blocks--;
if (clo_heap && hc->size != 0)
update_XCon(hc->where, -hc->size);
VG_(free)( hc );
// Actually free the heap block, if necessary
if (!custom_free)
VG_(cli_free)( p );
// do a census!
hp_census();
VGP_POPCC(VgpCliMalloc);
}
static void* ms_malloc ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms___builtin_new ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms___builtin_vec_new ( ThreadId tid, SizeT n )
{
return new_block( tid, NULL, n, VG_(clo_alignment), /*is_zeroed*/False );
}
static void* ms_calloc ( ThreadId tid, SizeT m, SizeT size )
{
return new_block( tid, NULL, m*size, VG_(clo_alignment), /*is_zeroed*/True );
}
static void *ms_memalign ( ThreadId tid, SizeT align, SizeT n )
{
return new_block( tid, NULL, n, align, False );
}
static void ms_free ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False );
}
static void ms___builtin_delete ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False);
}
static void ms___builtin_vec_delete ( ThreadId tid, void* p )
{
die_block( p, /*custom_free*/False );
}
static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_size )
{
HP_Chunk* hc;
void* p_new;
SizeT old_size;
XPt *old_where, *new_where;
VGP_PUSHCC(VgpCliMalloc);
// Remove the old block
hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
if (hc == NULL) {
VGP_POPCC(VgpCliMalloc);
return NULL; // must have been a bogus realloc()
}
old_size = hc->size;
if (new_size <= old_size) {
// new size is smaller or same; block not moved
p_new = p_old;
} else {
// new size is bigger; make new block, copy shared contents, free old
p_new = VG_(cli_malloc)(VG_(clo_alignment), new_size);
VG_(memcpy)(p_new, p_old, old_size);
VG_(cli_free)(p_old);
}
old_where = hc->where;
new_where = get_XCon( tid, /*custom_malloc*/False);
// Update HP_Chunk
hc->data = (Addr)p_new;
hc->size = new_size;
hc->where = new_where;
// Update XPt curr_space fields
if (clo_heap) {
if (0 != old_size) update_XCon(old_where, -old_size);
if (0 != new_size) update_XCon(new_where, new_size);
}
// Now insert the new hc (with a possibly new 'data' field) into
// malloc_list. If this realloc() did not increase the memory size, we
// will have removed and then re-added mc unnecessarily. But that's ok
// because shrinking a block with realloc() is (presumably) much rarer
// than growing it, and this way simplifies the growing case.
VG_(HT_add_node)(malloc_list, hc);
VGP_POPCC(VgpCliMalloc);
return p_new;
}
/*------------------------------------------------------------*/
/*--- Taking a census ---*/
/*------------------------------------------------------------*/
static Census censi[MAX_N_CENSI];
static UInt curr_census = 0;
static UInt get_xtree_size(XPt* xpt, UInt ix)
{
UInt i;
// If no memory allocated at all, nothing interesting to record.
if (alloc_xpt->curr_space == 0) return 0;
// Ignore sub-XTrees that account for a miniscule fraction of current
// allocated space.
if (xpt->curr_space / (double)alloc_xpt->curr_space > 0.002) {
ix++;
// Count all (non-zero) descendent XPts
for (i = 0; i < xpt->n_children; i++)
ix = get_xtree_size(xpt->children[i], ix);
}
return ix;
}
static
UInt do_space_snapshot(XPt xpt[], XTreeSnapshot xtree_snapshot, UInt ix)
{
UInt i;
// Structure of this function mirrors that of get_xtree_size().
if (alloc_xpt->curr_space == 0) return 0;
if (xpt->curr_space / (double)alloc_xpt->curr_space > 0.002) {
xtree_snapshot[ix].xpt = xpt;
xtree_snapshot[ix].space = xpt->curr_space;
ix++;
for (i = 0; i < xpt->n_children; i++)
ix = do_space_snapshot(xpt->children[i], xtree_snapshot, ix);
}
return ix;
}
static UInt ms_interval;
static UInt do_every_nth_census = 30;
// Weed out half the censi; we choose those that represent the smallest
// time-spans, because that loses the least information.
//
// Algorithm for N censi: We find the census representing the smallest
// timeframe, and remove it. We repeat this until (N/2)-1 censi are gone.
// (It's (N/2)-1 because we never remove the first and last censi.)
// We have to do this one census at a time, rather than finding the (N/2)-1
// smallest censi in one hit, because when a census is removed, it's
// neighbours immediately cover greater timespans. So it's N^2, but N only
// equals 200, and this is only done every 100 censi, which is not too often.
static void halve_censi(void)
{
Int i, jp, j, jn, k;
Census* min_census;
n_halvings++;
if (VG_(clo_verbosity) > 1)
VG_(message)(Vg_UserMsg, "Halving censi...");
// Sets j to the index of the first not-yet-removed census at or after i
#define FIND_CENSUS(i, j) \
for (j = i; j < MAX_N_CENSI && -1 == censi[j].ms_time; j++) { }
for (i = 2; i < MAX_N_CENSI; i += 2) {
// Find the censi representing the smallest timespan. The timespan
// for census n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
// censi A and B. We don't consider the first and last censi for
// removal.
Int min_span = 0x7fffffff;
Int min_j = 0;
// Initial triple: (prev, curr, next) == (jp, j, jn)
jp = 0;
FIND_CENSUS(1, j);
FIND_CENSUS(j+1, jn);
while (jn < MAX_N_CENSI) {
Int timespan = censi[jn].ms_time - censi[jp].ms_time;
tl_assert(timespan >= 0);
if (timespan < min_span) {
min_span = timespan;
min_j = j;
}
// Move on to next triple
jp = j;
j = jn;
FIND_CENSUS(jn+1, jn);
}
// We've found the least important census, now remove it
min_census = & censi[ min_j ];
for (k = 0; NULL != min_census->xtree_snapshots[k]; k++) {
n_snapshot_frees++;
VG_(free)(min_census->xtree_snapshots[k]);
min_census->xtree_snapshots[k] = NULL;
}
min_census->ms_time = -1;
}
// Slide down the remaining censi over the removed ones. The '<=' is
// because we are removing on (N/2)-1, rather than N/2.
for (i = 0, j = 0; i <= MAX_N_CENSI / 2; i++, j++) {
FIND_CENSUS(j, j);
if (i != j) {
censi[i] = censi[j];
}
}
curr_census = i;
// Double intervals
ms_interval *= 2;
do_every_nth_census *= 2;
if (VG_(clo_verbosity) > 1)
VG_(message)(Vg_UserMsg, "...done");
}
// Take a census. Census time seems to be insignificant (usually <= 0 ms,
// almost always <= 1ms) so don't have to worry about subtracting it from
// running time in any way.
//
// XXX: NOT TRUE! with bigger depths, konqueror censuses can easily take
// 50ms!
static void hp_census(void)
{
static UInt ms_prev_census = 0;
static UInt ms_next_census = 0; // zero allows startup census
Int ms_time, ms_time_since_prev;
Census* census;
VGP_PUSHCC(VgpCensus);
// Only do a census if it's time
ms_time = VG_(read_millisecond_timer)();
ms_time_since_prev = ms_time - ms_prev_census;
if (ms_time < ms_next_census) {
n_fake_censi++;
VGP_POPCC(VgpCensus);
return;
}
n_real_censi++;
census = & censi[curr_census];
census->ms_time = ms_time;
// Heap: snapshot the K most significant XTrees -------------------
if (clo_heap) {
Int i, K;
K = ( alloc_xpt->n_children < MAX_SNAPSHOTS
? alloc_xpt->n_children
: MAX_SNAPSHOTS); // max out
// Update .approx_ST field (approximatively) for all top-XPts.
// We *do not* do it for any non-top-XPTs.
for (i = 0; i < alloc_xpt->n_children; i++) {
XPt* top_XPt = alloc_xpt->children[i];
top_XPt->approx_ST += top_XPt->curr_space * ms_time_since_prev;
}
// Sort top-XPts by approx_ST field.
VG_(ssort)(alloc_xpt->children, alloc_xpt->n_children, sizeof(XPt*),
XPt_cmp_approx_ST);
VGP_PUSHCC(VgpCensusHeap);
// For each significant top-level XPt, record space info about its
// entire XTree, in a single census entry.
// Nb: the xtree_size count/snapshot buffer allocation, and the actual
// snapshot, take similar amounts of time (measured with the
// millisecond counter).
for (i = 0; i < K; i++) {
UInt xtree_size, xtree_size2;
// VG_(printf)("%7u ", alloc_xpt->children[i]->approx_ST);
// Count how many XPts are in the XTree
VGP_PUSHCC(VgpCensusTreeSize);
xtree_size = get_xtree_size( alloc_xpt->children[i], 0 );
VGP_POPCC(VgpCensusTreeSize);
// If no XPts counted (ie. alloc_xpt.curr_space==0 or XTree
// insignificant) then don't take any more snapshots.
if (0 == xtree_size) break;
// Make array of the appropriate size (+1 for zero termination,
// which calloc() does for us).
census->xtree_snapshots[i] =
VG_(calloc)(xtree_size+1, sizeof(XPtSnapshot));
if (0 && VG_(clo_verbosity) > 1)
VG_(printf)("calloc: %d (%d B)\n", xtree_size+1,
(xtree_size+1) * sizeof(XPtSnapshot));
// Take space-snapshot: copy 'curr_space' for every XPt in the
// XTree into the snapshot array, along with pointers to the XPts.
// (Except for ones with curr_space==0, which wouldn't contribute
// to the final exact_ST_dbld calculation anyway; excluding them
// saves a lot of memory and up to 40% time with big --depth valus.
VGP_PUSHCC(VgpCensusSnapshot);
xtree_size2 = do_space_snapshot(alloc_xpt->children[i],
census->xtree_snapshots[i], 0);
tl_assert(xtree_size == xtree_size2);
VGP_POPCC(VgpCensusSnapshot);
}
// VG_(printf)("\n\n");
// Zero-terminate 'xtree_snapshot' array
census->xtree_snapshots[i] = NULL;
VGP_POPCC(VgpCensusHeap);
//VG_(printf)("printed %d censi\n", K);
// Lump the rest into a single "others" entry.
census->others_space = 0;
for (i = K; i < alloc_xpt->n_children; i++) {
census->others_space += alloc_xpt->children[i]->curr_space;
}
}
// Heap admin -------------------------------------------------------
if (clo_heap_admin > 0)
census->heap_admin_space = clo_heap_admin * n_heap_blocks;
// Stack(s) ---------------------------------------------------------
if (clo_stacks) {
ThreadId tid;
Addr stack_min, stack_max;
census->stacks_space = sigstacks_space;
VG_(thread_stack_reset_iter)();
while ( VG_(thread_stack_next)(&tid, &stack_min, &stack_max) ) {
census->stacks_space += (stack_max - stack_min);
}
}
// Finish, update interval if necessary -----------------------------
curr_census++;
census = NULL; // don't use again now that curr_census changed
// Halve the entries, if our census table is full
if (MAX_N_CENSI == curr_census) {
halve_censi();
}
// Take time for next census from now, rather than when this census
// should have happened. Because, if there's a big gap due to a kernel
// operation, there's no point doing catch-up censi every BB for a while
// -- that would just give N censi at almost the same time.
if (VG_(clo_verbosity) > 1) {
VG_(message)(Vg_UserMsg, "census: %d ms (took %d ms)", ms_time,
VG_(read_millisecond_timer)() - ms_time );
}
ms_prev_census = ms_time;
ms_next_census = ms_time + ms_interval;
//ms_next_census += ms_interval;
//VG_(printf)("Next: %d ms\n", ms_next_census);
VGP_POPCC(VgpCensus);
}
/*------------------------------------------------------------*/
/*--- Tracked events ---*/
/*------------------------------------------------------------*/
static void new_mem_stack_signal(Addr a, SizeT len)
{
sigstacks_space += len;
}
static void die_mem_stack_signal(Addr a, SizeT len)
{
tl_assert(sigstacks_space >= len);
sigstacks_space -= len;
}
/*------------------------------------------------------------*/
/*--- Client Requests ---*/
/*------------------------------------------------------------*/
static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
{
switch (argv[0]) {
case VG_USERREQ__MALLOCLIKE_BLOCK: {
void* res;
void* p = (void*)argv[1];
SizeT sizeB = argv[2];
*ret = 0;
res = new_block( tid, p, sizeB, /*align--ignored*/0, /*is_zeroed*/False );
tl_assert(res == p);
return True;
}
case VG_USERREQ__FREELIKE_BLOCK: {
void* p = (void*)argv[1];
*ret = 0;
die_block( p, /*custom_free*/True );
return True;
}
default:
*ret = 0;
return False;
}
}
/*------------------------------------------------------------*/
/*--- Instrumentation ---*/
/*------------------------------------------------------------*/
static IRBB* ms_instrument ( IRBB* bb_in, VexGuestLayout* layout,
IRType gWordTy, IRType hWordTy )
{
/* XXX Will Massif work when gWordTy != hWordTy ? */
return bb_in;
}
/*------------------------------------------------------------*/
/*--- Spacetime recomputation ---*/
/*------------------------------------------------------------*/
// Although we've been calculating space-time along the way, because the
// earlier calculations were done at a finer timescale, the .approx_ST field
// might not agree with what hp2ps sees, because we've thrown away some of
// the information. So recompute it at the scale that hp2ps sees, so we can
// confidently determine which contexts hp2ps will choose for displaying as
// distinct bands. This recomputation only happens to the significant ones
// that get printed in the .hp file, so it's cheap.
//
// The approx_ST calculation:
// ( a[0]*d(0,1) + a[1]*(d(0,1) + d(1,2)) + ... + a[N-1]*d(N-2,N-1) ) / 2
// where
// a[N] is the space at census N
// d(A,B) is the time interval between censi A and B
// and
// d(A,B) + d(B,C) == d(A,C)
//
// Key point: we can calculate the area for a census without knowing the
// previous or subsequent censi's space; because any over/underestimates
// for this census will be reversed in the next, balancing out. This is
// important, as getting the previous/next census entry for a particular
// AP is a pain with this data structure, but getting the prev/next
// census time is easy.
//
// Each heap calculation gets added to its context's exact_ST_dbld field.
// The ULong* values are all running totals, hence the use of "+=" everywhere.
// This does the calculations for a single census.
static void calc_exact_ST_dbld2(Census* census, UInt d_t1_t2,
ULong* twice_heap_ST,
ULong* twice_heap_admin_ST,
ULong* twice_stack_ST)
{
UInt i, j;
XPtSnapshot* xpt_snapshot;
// Heap --------------------------------------------------------
if (clo_heap) {
for (i = 0; NULL != census->xtree_snapshots[i]; i++) {
// Compute total heap exact_ST_dbld for the entire XTree using only
// the top-XPt (the first XPt in xtree_snapshot).
*twice_heap_ST += d_t1_t2 * census->xtree_snapshots[i][0].space;
// Increment exact_ST_dbld for every XPt in xtree_snapshot (inc.
// top one)
for (j = 0; NULL != census->xtree_snapshots[i][j].xpt; j++) {
xpt_snapshot = & census->xtree_snapshots[i][j];
xpt_snapshot->xpt->exact_ST_dbld += d_t1_t2 * xpt_snapshot->space;
}
}
*twice_heap_ST += d_t1_t2 * census->others_space;
}
// Heap admin --------------------------------------------------
if (clo_heap_admin > 0)
*twice_heap_admin_ST += d_t1_t2 * census->heap_admin_space;
// Stack(s) ----------------------------------------------------
if (clo_stacks)
*twice_stack_ST += d_t1_t2 * census->stacks_space;
}
// This does the calculations for all censi.
static void calc_exact_ST_dbld(ULong* heap2, ULong* heap_admin2, ULong* stack2)
{
UInt i, N = curr_census;
VGP_PUSHCC(VgpCalcSpacetime2);
*heap2 = 0;
*heap_admin2 = 0;
*stack2 = 0;
if (N <= 1)
return;
calc_exact_ST_dbld2( &censi[0], censi[1].ms_time - censi[0].ms_time,
heap2, heap_admin2, stack2 );
for (i = 1; i <= N-2; i++) {
calc_exact_ST_dbld2( & censi[i], censi[i+1].ms_time - censi[i-1].ms_time,
heap2, heap_admin2, stack2 );
}
calc_exact_ST_dbld2( & censi[N-1], censi[N-1].ms_time - censi[N-2].ms_time,
heap2, heap_admin2, stack2 );
// Now get rid of the halves. May lose a 0.5 on each, doesn't matter.
*heap2 /= 2;
*heap_admin2 /= 2;
*stack2 /= 2;
VGP_POPCC(VgpCalcSpacetime2);
}
/*------------------------------------------------------------*/
/*--- Writing the graph file ---*/
/*------------------------------------------------------------*/
static Char* make_filename(Char* dir, Char* suffix)
{
Char* filename;
/* Block is big enough for dir name + massif.<pid>.<suffix> */
filename = VG_(malloc)((VG_(strlen)(dir) + 32)*sizeof(Char));
VG_(sprintf)(filename, "%s/massif.%d%s", dir, VG_(getpid)(), suffix);
return filename;
}
// Make string acceptable to hp2ps (sigh): remove spaces, escape parentheses.
static Char* clean_fnname(Char *d, Char* s)
{
Char* dorig = d;
while (*s) {
if (' ' == *s) { *d = '%'; }
else if ('(' == *s) { *d++ = '\\'; *d = '('; }
else if (')' == *s) { *d++ = '\\'; *d = ')'; }
else { *d = *s; };
s++;
d++;
}
*d = '\0';
return dorig;
}
static void file_err ( Char* file )
{
VG_(message)(Vg_UserMsg, "error: can't open output file '%s'", file );
VG_(message)(Vg_UserMsg, " ... so profile results will be missing.");
}
/* Format, by example:
JOB "a.out -p"
DATE "Fri Apr 17 11:43:45 1992"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
SYSTEM 24
END_SAMPLE 0.00
BEGIN_SAMPLE 1.00
elim 180
insert 24
intersect 12
disin 60
main 12
reduce 20
SYSTEM 12
END_SAMPLE 1.00
MARK 1.50
MARK 1.75
MARK 1.80
BEGIN_SAMPLE 2.00
elim 192
insert 24
intersect 12
disin 84
main 12
SYSTEM 24
END_SAMPLE 2.00
BEGIN_SAMPLE 2.82
END_SAMPLE 2.82
*/
static void write_hp_file(void)
{
Int i, j;
Int fd, res;
SysRes sres;
Char *hp_file, *ps_file, *aux_file;
Char* cmdfmt;
Char* cmdbuf;
Int cmdlen;
VGP_PUSHCC(VgpPrintHp);
// Open file
hp_file = make_filename( base_dir, ".hp" );
ps_file = make_filename( base_dir, ".ps" );
aux_file = make_filename( base_dir, ".aux" );
sres = VG_(open)(hp_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (sres.isError) {
file_err( hp_file );
VGP_POPCC(VgpPrintHp);
return;
} else {
fd = sres.val;
}
// File header, including command line
SPRINTF(buf, "JOB \"");
if (VG_(args_the_exename)) {
SPRINTF(buf, "%s", VG_(args_the_exename));
}
for (i = 0; i < VG_(args_for_client).used; i++) {
if (VG_(args_for_client).strs[i])
SPRINTF(buf, " %s", VG_(args_for_client).strs[i]);
}
SPRINTF(buf, /*" (%d ms/sample)\"\n"*/ "\"\n"
"DATE \"\"\n"
"SAMPLE_UNIT \"ms\"\n"
"VALUE_UNIT \"bytes\"\n", ms_interval);
// Censi
for (i = 0; i < curr_census; i++) {
Census* census = & censi[i];
// Census start
SPRINTF(buf, "MARK %d.0\n"
"BEGIN_SAMPLE %d.0\n",
census->ms_time, census->ms_time);
// Heap -----------------------------------------------------------
if (clo_heap) {
// Print all the significant XPts from that census
for (j = 0; NULL != census->xtree_snapshots[j]; j++) {
// Grab the jth top-XPt
XTreeSnapshot xtree_snapshot = & census->xtree_snapshots[j][0];
if ( ! VG_(get_fnname)(xtree_snapshot->xpt->ip, buf2, 16)) {
VG_(sprintf)(buf2, "???");
}
SPRINTF(buf, "x%x:%s %d\n", xtree_snapshot->xpt->ip,
clean_fnname(buf3, buf2), xtree_snapshot->space);
}
// Remaining heap block alloc points, combined
if (census->others_space > 0)
SPRINTF(buf, "other %d\n", census->others_space);
}
// Heap admin -----------------------------------------------------
if (clo_heap_admin > 0 && census->heap_admin_space)
SPRINTF(buf, "heap-admin %d\n", census->heap_admin_space);
// Stack(s) -------------------------------------------------------
if (clo_stacks)
SPRINTF(buf, "stack(s) %d\n", census->stacks_space);
// Census end
SPRINTF(buf, "END_SAMPLE %d.0\n", census->ms_time);
}
// Close file
tl_assert(fd >= 0);
VG_(close)(fd);
// Attempt to convert file using hp2ps
cmdfmt = "%s/hp2ps -c -t1 %s";
cmdlen = VG_(strlen)(VG_(libdir)) + VG_(strlen)(hp_file)
+ VG_(strlen)(cmdfmt);
cmdbuf = VG_(malloc)( sizeof(Char) * cmdlen );
VG_(sprintf)(cmdbuf, cmdfmt, VG_(libdir), hp_file);
res = VG_(system)(cmdbuf);
VG_(free)(cmdbuf);
if (res != 0) {
VG_(message)(Vg_UserMsg,
"Conversion to PostScript failed. Try converting manually.");
} else {
// remove the .hp and .aux file
VG_(unlink)(hp_file);
VG_(unlink)(aux_file);
}
VG_(free)(hp_file);
VG_(free)(ps_file);
VG_(free)(aux_file);
VGP_POPCC(VgpPrintHp);
}
/*------------------------------------------------------------*/
/*--- Writing the XPt text/HTML file ---*/
/*------------------------------------------------------------*/
static void percentify(Int n, Int pow, Int field_width, char xbuf[])
{
int i, len, space;
VG_(sprintf)(xbuf, "%d.%d%%", n / pow, n % pow);
len = VG_(strlen)(xbuf);
space = field_width - len;
if (space < 0) space = 0; /* Allow for v. small field_width */
i = len;
/* Right justify in field */
for ( ; i >= 0; i--) xbuf[i + space] = xbuf[i];
for (i = 0; i < space; i++) xbuf[i] = ' ';
}
// Nb: uses a static buffer, each call trashes the last string returned.
static Char* make_perc(ULong spacetime, ULong total_spacetime)
{
static Char mbuf[32];
UInt p = 10;
tl_assert(0 != total_spacetime);
percentify(spacetime * 100 * p / total_spacetime, p, 5, mbuf);
return mbuf;
}
// Nb: passed in XPt is a lower-level XPt; IPs are grabbed from
// bottom-to-top of XCon, and then printed in the reverse order.
static UInt pp_XCon(Int fd, XPt* xpt)
{
Addr rev_ips[clo_depth+1];
Int i = 0;
Int n = 0;
Bool is_HTML = ( XHTML == clo_format );
Char* maybe_br = ( is_HTML ? "<br>" : "" );
Char* maybe_indent = ( is_HTML ? "&nbsp;&nbsp;" : "" );
tl_assert(NULL != xpt);
while (True) {
rev_ips[i] = xpt->ip;
n++;
if (alloc_xpt == xpt->parent) break;
i++;
xpt = xpt->parent;
}
for (i = n-1; i >= 0; i--) {
// -1 means point to calling line
VG_(describe_IP)(rev_ips[i]-1, buf2, BUF_LEN);
SPRINTF(buf, " %s%s%s\n", maybe_indent, buf2, maybe_br);
}
return n;
}
// Important point: for HTML, each XPt must be identified uniquely for the
// HTML links to all match up correctly. Using xpt->ip is not
// sufficient, because function pointers mean that you can call more than
// one other function from a single code location. So instead we use the
// address of the xpt struct itself, which is guaranteed to be unique.
static void pp_all_XPts2(Int fd, Queue* q, ULong heap_spacetime,
ULong total_spacetime)
{
UInt i;
XPt *xpt, *child;
UInt L = 0;
UInt c1 = 1;
UInt c2 = 0;
ULong sum = 0;
UInt n;
Char *ip_desc, *perc;
Bool is_HTML = ( XHTML == clo_format );
Char* maybe_br = ( is_HTML ? "<br>" : "" );
Char* maybe_p = ( is_HTML ? "<p>" : "" );
Char* maybe_ul = ( is_HTML ? "<ul>" : "" );
Char* maybe_li = ( is_HTML ? "<li>" : "" );
Char* maybe_fli = ( is_HTML ? "</li>" : "" );
Char* maybe_ful = ( is_HTML ? "</ul>" : "" );
Char* end_hr = ( is_HTML ? "<hr>" :
"=================================" );
Char* depth = ( is_HTML ? "<code>--depth</code>" : "--depth" );
if (total_spacetime == 0) {
SPRINTF(buf, "(No heap memory allocated)\n");
return;
}
SPRINTF(buf, "== %d ===========================%s\n", L, maybe_br);
while (NULL != (xpt = (XPt*)dequeue(q))) {
// Check that non-top-level XPts have a zero .approx_ST field.
if (xpt->parent != alloc_xpt) tl_assert( 0 == xpt->approx_ST );
// Check that the sum of all children .exact_ST_dbld fields equals
// parent's (unless alloc_xpt, when it should == 0).
if (alloc_xpt == xpt) {
tl_assert(0 == xpt->exact_ST_dbld);
} else {
sum = 0;
for (i = 0; i < xpt->n_children; i++) {
sum += xpt->children[i]->exact_ST_dbld;
}
//tl_assert(sum == xpt->exact_ST_dbld);
// It's possible that not all the children were included in the
// exact_ST_dbld calculations. Hopefully almost all of them were, and
// all the important ones.
// tl_assert(sum <= xpt->exact_ST_dbld);
// tl_assert(sum * 1.05 > xpt->exact_ST_dbld );
// if (sum != xpt->exact_ST_dbld) {
// VG_(printf)("%lld, %lld\n", sum, xpt->exact_ST_dbld);
// }
}
if (xpt == alloc_xpt) {
SPRINTF(buf, "Heap allocation functions accounted for "
"%s of measured spacetime%s\n",
make_perc(heap_spacetime, total_spacetime), maybe_br);
} else {
// Remember: exact_ST_dbld is space.time *doubled*
perc = make_perc(xpt->exact_ST_dbld / 2, total_spacetime);
if (is_HTML) {
SPRINTF(buf, "<a name=\"b%x\"></a>"
"Context accounted for "
"<a href=\"#a%x\">%s</a> of measured spacetime<br>\n",
xpt, xpt, perc);
} else {
SPRINTF(buf, "Context accounted for %s of measured spacetime\n",
perc);
}
n = pp_XCon(fd, xpt);
tl_assert(n == L);
}
// Sort children by exact_ST_dbld
VG_(ssort)(xpt->children, xpt->n_children, sizeof(XPt*),
XPt_cmp_exact_ST_dbld);
SPRINTF(buf, "%s\nCalled from:%s\n", maybe_p, maybe_ul);
for (i = 0; i < xpt->n_children; i++) {
child = xpt->children[i];
// Stop when <1% of total spacetime
if (child->exact_ST_dbld * 1000 / (total_spacetime * 2) < 5) {
UInt n_insig = xpt->n_children - i;
Char* s = ( n_insig == 1 ? "" : "s" );
Char* and = ( 0 == i ? "" : "and " );
Char* other = ( 0 == i ? "" : "other " );
SPRINTF(buf, " %s%s%d %sinsignificant place%s%s\n\n",
maybe_li, and, n_insig, other, s, maybe_fli);
break;
}
// Remember: exact_ST_dbld is space.time *doubled*
perc = make_perc(child->exact_ST_dbld / 2, total_spacetime);
ip_desc = VG_(describe_IP)(child->ip-1, buf2, BUF_LEN);
if (is_HTML) {
SPRINTF(buf, "<li><a name=\"a%x\"></a>", child );
if (child->n_children > 0) {
SPRINTF(buf, "<a href=\"#b%x\">%s</a>", child, perc);
} else {
SPRINTF(buf, "%s", perc);
}
SPRINTF(buf, ": %s\n", ip_desc);
} else {
SPRINTF(buf, " %6s: %s\n\n", perc, ip_desc);
}
if (child->n_children > 0) {
enqueue(q, (void*)child);
c2++;
}
}
SPRINTF(buf, "%s%s", maybe_ful, maybe_p);
c1--;
// Putting markers between levels of the structure:
// c1 tracks how many to go on this level, c2 tracks how many we've
// queued up for the next level while finishing off this level.
// When c1 gets to zero, we've changed levels, so print a marker,
// move c2 into c1, and zero c2.
if (0 == c1) {
L++;
c1 = c2;
c2 = 0;
if (! is_empty_queue(q) ) { // avoid empty one at end
SPRINTF(buf, "== %d ===========================%s\n", L, maybe_br);
}
} else {
SPRINTF(buf, "---------------------------------%s\n", maybe_br);
}
}
SPRINTF(buf, "%s\n\nEnd of information. Rerun with a bigger "
"%s value for more.\n", end_hr, depth);
}
static void pp_all_XPts(Int fd, XPt* xpt, ULong heap_spacetime,
ULong total_spacetime)
{
Queue* q = construct_queue(100);
enqueue(q, xpt);
pp_all_XPts2(fd, q, heap_spacetime, total_spacetime);
destruct_queue(q);
}
static void
write_text_file(ULong total_ST, ULong heap_ST)
{
SysRes sres;
Int fd, i;
Char* text_file;
Char* maybe_p = ( XHTML == clo_format ? "<p>" : "" );
VGP_PUSHCC(VgpPrintXPts);
// Open file
text_file = make_filename( base_dir,
( XText == clo_format ? ".txt" : ".html" ) );
sres = VG_(open)(text_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
VKI_S_IRUSR|VKI_S_IWUSR);
if (sres.isError) {
file_err( text_file );
VGP_POPCC(VgpPrintXPts);
return;
} else {
fd = sres.val;
}
// Header
if (XHTML == clo_format) {
SPRINTF(buf, "<html>\n"
"<head>\n"
"<title>%s</title>\n"
"</head>\n"
"<body>\n",
text_file);
}
// Command line
SPRINTF(buf, "Command:");
if (VG_(args_the_exename)) {
SPRINTF(buf, " %s", VG_(args_the_exename));
}
for (i = 0; i < VG_(args_for_client).used; i++) {
if (VG_(args_for_client).strs[i])
SPRINTF(buf, " %s", VG_(args_for_client).strs[i]);
}
SPRINTF(buf, "\n%s\n", maybe_p);
if (clo_heap)
pp_all_XPts(fd, alloc_xpt, heap_ST, total_ST);
tl_assert(fd >= 0);
VG_(close)(fd);
VGP_POPCC(VgpPrintXPts);
}
/*------------------------------------------------------------*/
/*--- Finalisation ---*/
/*------------------------------------------------------------*/
static void
print_summary(ULong total_ST, ULong heap_ST, ULong heap_admin_ST,
ULong stack_ST)
{
VG_(message)(Vg_UserMsg, "Total spacetime: %,llu ms.B", total_ST);
// Heap --------------------------------------------------------------
if (clo_heap)
VG_(message)(Vg_UserMsg, "heap: %s",
( 0 == total_ST ? (Char*)"(n/a)"
: make_perc(heap_ST, total_ST) ) );
// Heap admin --------------------------------------------------------
if (clo_heap_admin)
VG_(message)(Vg_UserMsg, "heap admin: %s",
( 0 == total_ST ? (Char*)"(n/a)"
: make_perc(heap_admin_ST, total_ST) ) );
tl_assert( VG_(HT_count_nodes)(malloc_list) == n_heap_blocks );
// Stack(s) ----------------------------------------------------------
if (clo_stacks) {
VG_(message)(Vg_UserMsg, "stack(s): %s",
( 0 == stack_ST ? (Char*)"0%"
: make_perc(stack_ST, total_ST) ) );
}
if (VG_(clo_verbosity) > 1) {
tl_assert(n_xpts > 0); // always have alloc_xpt
VG_(message)(Vg_DebugMsg, " allocs: %u", n_allocs);
VG_(message)(Vg_DebugMsg, "zeroallocs: %u (%d%%)", n_zero_allocs,
n_zero_allocs * 100 / n_allocs );
VG_(message)(Vg_DebugMsg, " frees: %u", n_frees);
VG_(message)(Vg_DebugMsg, " XPts: %u (%d B)", n_xpts,
n_xpts*sizeof(XPt));
VG_(message)(Vg_DebugMsg, " bot-XPts: %u (%d%%)", n_bot_xpts,
n_bot_xpts * 100 / n_xpts);
VG_(message)(Vg_DebugMsg, " top-XPts: %u (%d%%)", alloc_xpt->n_children,
alloc_xpt->n_children * 100 / n_xpts);
VG_(message)(Vg_DebugMsg, "c-reallocs: %u", n_children_reallocs);
VG_(message)(Vg_DebugMsg, "snap-frees: %u", n_snapshot_frees);
VG_(message)(Vg_DebugMsg, "atmp censi: %u", n_attempted_censi);
VG_(message)(Vg_DebugMsg, "fake censi: %u", n_fake_censi);
VG_(message)(Vg_DebugMsg, "real censi: %u", n_real_censi);
VG_(message)(Vg_DebugMsg, " halvings: %u", n_halvings);
}
}
static void ms_fini(Int exit_status)
{
ULong total_ST = 0;
ULong heap_ST = 0;
ULong heap_admin_ST = 0;
ULong stack_ST = 0;
// Do a final (empty) sample to show program's end
hp_census();
// Redo spacetimes of significant contexts to match the .hp file.
calc_exact_ST_dbld(&heap_ST, &heap_admin_ST, &stack_ST);
total_ST = heap_ST + heap_admin_ST + stack_ST;
write_hp_file ( );
write_text_file( total_ST, heap_ST );
print_summary ( total_ST, heap_ST, heap_admin_ST, stack_ST );
}
/*------------------------------------------------------------*/
/*--- Initialisation ---*/
/*------------------------------------------------------------*/
static void ms_post_clo_init(void)
{
ms_interval = 1;
// Do an initial sample for t = 0
hp_census();
}
static void ms_pre_clo_init()
{
VG_(details_name) ("Massif");
VG_(details_version) (NULL);
VG_(details_description) ("a space profiler");
VG_(details_copyright_author)("Copyright (C) 2003, Nicholas Nethercote");
VG_(details_bug_reports_to) (VG_BUGS_TO);
// Basic functions
VG_(basic_tool_funcs) (ms_post_clo_init,
ms_instrument,
ms_fini);
// Needs
VG_(needs_libc_freeres)();
VG_(needs_command_line_options)(ms_process_cmd_line_option,
ms_print_usage,
ms_print_debug_usage);
VG_(needs_client_requests) (ms_handle_client_request);
VG_(needs_malloc_replacement) (ms_malloc,
ms___builtin_new,
ms___builtin_vec_new,
ms_memalign,
ms_calloc,
ms_free,
ms___builtin_delete,
ms___builtin_vec_delete,
ms_realloc,
0 );
// Events to track
VG_(track_new_mem_stack_signal)( new_mem_stack_signal );
VG_(track_die_mem_stack_signal)( die_mem_stack_signal );
// Profiling events
VG_(register_profile_event)(VgpGetXPt, "get-XPt");
VG_(register_profile_event)(VgpGetXPtSearch, "get-XPt-search");
VG_(register_profile_event)(VgpCensus, "census");
VG_(register_profile_event)(VgpCensusHeap, "census-heap");
VG_(register_profile_event)(VgpCensusSnapshot, "census-snapshot");
VG_(register_profile_event)(VgpCensusTreeSize, "census-treesize");
VG_(register_profile_event)(VgpUpdateXCon, "update-XCon");
VG_(register_profile_event)(VgpCalcSpacetime2, "calc-exact_ST_dbld");
VG_(register_profile_event)(VgpPrintHp, "print-hp");
VG_(register_profile_event)(VgpPrintXPts, "print-XPts");
// HP_Chunks
malloc_list = VG_(HT_construct)( 80021 ); // prime, big
// Dummy node at top of the context structure.
alloc_xpt = new_XPt(0, NULL, /*is_bottom*/False);
tl_assert( VG_(getcwd)(base_dir, VKI_PATH_MAX) );
}
VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/