/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. amd64-linux/syscalls.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2005 Nicholas Nethercote njn25@cam.ac.uk This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "core.h" #include "ume.h" /* for jmp_with_stack */ #include "pub_core_sigframe.h" #include "pub_core_aspacemgr.h" /* COPIED FROM /usr/include/asm-i386/prctl.h (amd64-linux) */ #define ARCH_SET_GS 0x1001 #define ARCH_SET_FS 0x1002 #define ARCH_GET_FS 0x1003 #define ARCH_GET_GS 0x1004 /* --------------------------------------------------------------------- Stacks, thread wrappers, clone Note. Why is this stuff here? ------------------------------------------------------------------ */ /* These are addresses within VGA_(client_syscall). See syscall.S for details. */ extern const Addr VGA_(blksys_setup); extern const Addr VGA_(blksys_restart); extern const Addr VGA_(blksys_complete); extern const Addr VGA_(blksys_committed); extern const Addr VGA_(blksys_finished); // Back up to restart a system call. void VGA_(restart_syscall)(ThreadArchState *arch) { arch->vex.guest_RIP -= 2; // sizeof(syscall) /* Make sure our caller is actually sane, and we're really backing back over a syscall. syscall == 0F 05 */ { UChar *p = (UChar *)arch->vex.guest_RIP; if (p[0] != 0x0F || p[1] != 0x05) VG_(message)(Vg_DebugMsg, "?! restarting over syscall at %p %02x %02x\n", arch->vex.guest_RIP, p[0], p[1]); vg_assert(p[0] == 0x0F && p[1] == 0x05); } } /* Fix up the VCPU state when a syscall is interrupted by a signal. To do this, we determine the precise state of the syscall by looking at the (real) rip at the time the signal happened. The syscall sequence looks like: 1. unblock signals 2. perform syscall 3. save result to RAX 4. re-block signals If a signal happens at Then Why? [1-2) restart nothing has happened (restart syscall) [2] restart syscall hasn't started, or kernel wants to restart [2-3) save syscall complete, but results not saved [3-4) syscall complete, results saved Sometimes we never want to restart an interrupted syscall (because sigaction says not to), so we only restart if "restart" is True. This will also call VG_(post_syscall)() if the syscall has actually completed (either because it was interrupted, or because it actually finished). It will not call VG_(post_syscall)() if the syscall is set up for restart, which means that the pre-wrapper may get called multiple times. */ /* NB: this is identical to the x86 version */ void VGA_(interrupted_syscall)(ThreadId tid, struct vki_ucontext *uc, Bool restart) { static const Bool debug = 0; ThreadState *tst = VG_(get_ThreadState)(tid); ThreadArchState *th_regs = &tst->arch; Word ip = VGP_UCONTEXT_INSTR_PTR(uc); if (debug) VG_(printf)("interrupted_syscall: ip=%p; restart=%d eax=%d\n", ip, restart, VGP_UCONTEXT_SYSCALL_NUM(uc)); if (ip < VGA_(blksys_setup) || ip >= VGA_(blksys_finished)) { VG_(printf)(" not in syscall (%p - %p)\n", VGA_(blksys_setup), VGA_(blksys_finished)); vg_assert(tst->syscallno == -1); return; } vg_assert(tst->syscallno != -1); if (ip >= VGA_(blksys_setup) && ip < VGA_(blksys_restart)) { /* syscall hasn't even started; go around again */ if (debug) VG_(printf)(" not started: restart\n"); VGA_(restart_syscall)(th_regs); } else if (ip == VGA_(blksys_restart)) { /* We're either about to run the syscall, or it was interrupted and the kernel restarted it. Restart if asked, otherwise EINTR it. */ if (restart) VGA_(restart_syscall)(th_regs); else { th_regs->vex.VGP_SYSCALL_RET = -VKI_EINTR; VG_(post_syscall)(tid); } } else if (ip >= VGA_(blksys_complete) && ip < VGA_(blksys_committed)) { /* Syscall complete, but result hasn't been written back yet. The saved real CPU %rax has the result, which we need to move to RAX. */ if (debug) VG_(printf)(" completed: ret=%d\n", VGP_UCONTEXT_SYSCALL_RET(uc)); th_regs->vex.VGP_SYSCALL_RET = VGP_UCONTEXT_SYSCALL_RET(uc); VG_(post_syscall)(tid); } else if (ip >= VGA_(blksys_committed) && ip < VGA_(blksys_finished)) { /* Result committed, but the signal mask has not been restored; we expect our caller (the signal handler) will have fixed this up. */ if (debug) VG_(printf)(" all done\n"); VG_(post_syscall)(tid); } else VG_(core_panic)("?? strange syscall interrupt state?"); tst->syscallno = -1; } extern void VGA_(_client_syscall)(Int syscallno, void* guest_state, const vki_sigset_t *syscall_mask, const vki_sigset_t *restore_mask, Int nsigwords); void VGA_(client_syscall)(Int syscallno, ThreadState *tst, const vki_sigset_t *syscall_mask) { vki_sigset_t saved; VGA_(_client_syscall)(syscallno, &tst->arch.vex, syscall_mask, &saved, _VKI_NSIG_WORDS * sizeof(UWord)); } /* Allocate a stack for this thread. They're allocated lazily, but never freed. */ #define FILL 0xdeadbeefcabafeed static UWord* allocstack(ThreadId tid) { ThreadState *tst = VG_(get_ThreadState)(tid); UWord* rsp; if (tst->os_state.valgrind_stack_base == 0) { void *stk = VG_(mmap)(0, VGA_STACK_SIZE_W * sizeof(UWord) + VKI_PAGE_SIZE, VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_PRIVATE|VKI_MAP_ANONYMOUS, SF_VALGRIND, -1, 0); if (stk != (void *)-1) { VG_(mprotect)(stk, VKI_PAGE_SIZE, VKI_PROT_NONE); /* guard page */ tst->os_state.valgrind_stack_base = ((Addr)stk) + VKI_PAGE_SIZE; tst->os_state.valgrind_stack_szB = VGA_STACK_SIZE_W * sizeof(UWord); } else return (UWord*)-1; } for (rsp = (UWord*) tst->os_state.valgrind_stack_base; rsp < (UWord*)(tst->os_state.valgrind_stack_base + tst->os_state.valgrind_stack_szB); rsp++) *rsp = FILL; /* rsp is left at top of stack */ if (0) VG_(printf)("stack for tid %d at %p (%llx); rsp=%p\n", tid, tst->os_state.valgrind_stack_base, *(UWord*)(tst->os_state.valgrind_stack_base), rsp); return rsp; } /* NB: this is identical the the x86 version. */ /* Return how many bytes of this stack have not been used */ SSizeT VGA_(stack_unused)(ThreadId tid) { ThreadState *tst = VG_(get_ThreadState)(tid); UWord* p; for (p = (UWord*)tst->os_state.valgrind_stack_base; p && (p < (UWord*)(tst->os_state.valgrind_stack_base + tst->os_state.valgrind_stack_szB)); p++) if (*p != FILL) break; if (0) VG_(printf)("p=%p %llx tst->os_state.valgrind_stack_base=%p\n", p, *p, tst->os_state.valgrind_stack_base); return ((Addr)p) - tst->os_state.valgrind_stack_base; } /* Allocate a stack for the main thread, and call VGA_(thread_wrapper) on that stack. */ void VGA_(main_thread_wrapper)(ThreadId tid) { UWord* rsp = allocstack(tid); vg_assert(tid == VG_(master_tid)); call_on_new_stack_0_1( (Addr)rsp, /* stack */ 0, /*bogus return address*/ VGA_(thread_wrapper), /* fn to call */ (Word)tid /* arg to give it */ ); /*NOTREACHED*/ vg_assert(0); } static Int start_thread(void *arg) { ThreadState *tst = (ThreadState *)arg; ThreadId tid = tst->tid; VGA_(thread_wrapper)(tid); /* OK, thread is dead; this releases the run lock */ VG_(exit_thread)(tid); vg_assert(tst->status == VgTs_Zombie); /* Poke the reaper */ if (VG_(clo_trace_signals)) VG_(message)(Vg_DebugMsg, "Sending SIGVGCHLD to master tid=%d lwp=%d", VG_(master_tid), VG_(threads)[VG_(master_tid)].os_state.lwpid); VG_(tkill)(VG_(threads)[VG_(master_tid)].os_state.lwpid, VKI_SIGVGCHLD); /* We have to use this sequence to terminate the thread to prevent a subtle race. If VG_(exit_thread)() had left the ThreadState as Empty, then it could have been reallocated, reusing the stack while we're doing these last cleanups. Instead, VG_(exit_thread) leaves it as Zombie to prevent reallocation. We need to make sure we don't touch the stack between marking it Empty and exiting. Hence the assembler. */ asm volatile ( "movl %1, %0\n" /* set tst->status = VgTs_Empty */ "movq %2, %%rax\n" /* set %rax = __NR_exit */ "movq %3, %%rdi\n" /* set %rdi = tst->os_state.exitcode */ "syscall\n" /* exit(tst->os_state.exitcode) */ : "=m" (tst->status) : "n" (VgTs_Empty), "n" (__NR_exit), "m" (tst->os_state.exitcode)); VG_(core_panic)("Thread exit failed?\n"); } /* clone() handling When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for EIP, and a separate stack for ESP. */ static Int do_clone(ThreadId ptid, UInt flags, Addr rsp, Int *parent_tidptr, Int *child_tidptr, Addr tlsaddr) { static const Bool debug = False; ThreadId ctid = VG_(alloc_ThreadState)(); ThreadState *ptst = VG_(get_ThreadState)(ptid); ThreadState *ctst = VG_(get_ThreadState)(ctid); UWord *stack; Segment *seg; Int ret; vki_sigset_t blockall, savedmask; VG_(sigfillset)(&blockall); vg_assert(VG_(is_running_thread)(ptid)); vg_assert(VG_(is_valid_tid)(ctid)); stack = allocstack(ctid); /* Copy register state Both parent and child return to the same place, and the code following the clone syscall works out which is which, so we don't need to worry about it. The parent gets the child's new tid returned from clone, but the child gets 0. If the clone call specifies a NULL rsp for the new thread, then it actually gets a copy of the parent's rsp. */ VGA_(setup_child)( &ctst->arch, &ptst->arch ); VGP_SET_SYSCALL_RESULT(ctst->arch, 0); if (rsp != 0) ctst->arch.vex.guest_RSP = rsp; ctst->os_state.parent = ptid; ctst->os_state.clone_flags = flags; ctst->os_state.parent_tidptr = parent_tidptr; ctst->os_state.child_tidptr = child_tidptr; /* inherit signal mask */ ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* We don't really know where the client stack is, because its allocated by the client. The best we can do is look at the memory mappings and try to derive some useful information. We assume that esp starts near its highest possible value, and can only go down to the start of the mmaped segment. */ seg = VG_(find_segment)((Addr)rsp); if (seg) { ctst->client_stack_highest_word = (Addr)PGROUNDUP(rsp); ctst->client_stack_szB = ctst->client_stack_highest_word - seg->addr; if (debug) VG_(printf)("tid %d: guessed client stack range %p-%p\n", ctid, seg->addr, PGROUNDUP(rsp)); } else { VG_(message)(Vg_UserMsg, "!? New thread %d starts with RSP(%p) unmapped\n", ctid, rsp); ctst->client_stack_szB = 0; } if (flags & VKI_CLONE_SETTLS) { if (debug) VG_(printf)("clone child has SETTLS: tls at %p\n", tlsaddr); ctst->arch.vex.guest_FS_ZERO = tlsaddr; } flags &= ~VKI_CLONE_SETTLS; /* start the thread with everything blocked */ VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask); /* Create the new thread */ ret = VG_(clone)(start_thread, stack, flags, &VG_(threads)[ctid], child_tidptr, parent_tidptr, NULL); VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL); if (ret < 0) { /* clone failed */ VGA_(cleanup_thread)(&ctst->arch); ctst->status = VgTs_Empty; } return ret; } /* Do a clone which is really a fork() */ static Int do_fork_clone(ThreadId tid, UInt flags, Addr rsp, Int *parent_tidptr, Int *child_tidptr) { vki_sigset_t fork_saved_mask; vki_sigset_t mask; Int ret; if (flags & (VKI_CLONE_SETTLS | VKI_CLONE_FS | VKI_CLONE_VM | VKI_CLONE_FILES | VKI_CLONE_VFORK)) return -VKI_EINVAL; /* Block all signals during fork, so that we can fix things up in the child without being interrupted. */ VG_(sigfillset)(&mask); VG_(sigprocmask)(VKI_SIG_SETMASK, &mask, &fork_saved_mask); VG_(do_atfork_pre)(tid); /* Since this is the fork() form of clone, we don't need all that VG_(clone) stuff */ ret = VG_(do_syscall5)(__NR_clone, flags, (UWord)NULL, (UWord)parent_tidptr, (UWord)NULL, (UWord)child_tidptr); if (ret == 0) { /* child */ VG_(do_atfork_child)(tid); /* restore signal mask */ VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL); } else if (ret > 0) { /* parent */ if (VG_(clo_trace_syscalls)) VG_(printf)(" clone(fork): process %d created child %d\n", VG_(getpid)(), ret); VG_(do_atfork_parent)(tid); /* restore signal mask */ VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL); } return ret; } /* --------------------------------------------------------------------- PRE/POST wrappers for AMD64/Linux-specific syscalls ------------------------------------------------------------------ */ // Nb: See the comment above the generic PRE/POST wrappers in // coregrind/vg_syscalls.c for notes about how they work. #define PRE(name, f) PRE_TEMPLATE(static, amd64_linux, name, f) #define POST(name) POST_TEMPLATE(static, amd64_linux, name) PRE(sys_clone, Special) { UInt cloneflags; PRINT("sys_clone ( %x, %p, %p, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(int, "clone", unsigned long, flags, void *, child_stack, int *, parent_tidptr, int *, child_tidptr, void *, tlsaddr); if (ARG1 & VKI_CLONE_PARENT_SETTID) { PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(is_addressable)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_RESULT( -VKI_EFAULT ); return; } } if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int)); if (!VG_(is_addressable)(ARG4, sizeof(Int), VKI_PROT_WRITE)) { SET_RESULT( -VKI_EFAULT ); return; } } cloneflags = ARG1; if (!VG_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) { SET_RESULT( -VKI_EINVAL ); return; } /* Only look at the flags we really care about */ switch(cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_RESULT(do_clone(tid, ARG1, /* flags */ (Addr)ARG2, /* child ESP */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4, /* child_tidptr */ (Addr)ARG5)); /* set_tls */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_RESULT(do_fork_clone(tid, cloneflags, /* flags */ (Addr)ARG2, /* child ESP */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG4)); /* child_tidptr */ break; default: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, "Unsupported clone() flags: %x", ARG1); VG_(unimplemented) ("Valgrind does not support general clone(). The only supported uses " "are via a threads library, fork, or vfork."); } if (!VG_(is_kerror)(RES)) { if (ARG1 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG4, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ VG_(vg_yield)(); } } PRE(sys_rt_sigreturn, Special) { PRINT("rt_sigreturn ( )"); /* Adjust esp to point to start of frame; skip back up over handler ret addr */ tst->arch.vex.guest_RSP -= sizeof(Addr); /* This is only so that the RIP is (might be) useful to report if something goes wrong in the sigreturn */ VGA_(restart_syscall)(&tst->arch); VG_(sigframe_destroy)(tid, True); /* Keep looking for signals until there are none */ VG_(poll_signals)(tid); /* placate return-must-be-set assertion */ SET_RESULT(RES); } PRE(sys_arch_prctl, 0) { PRINT( "arch_prctl ( %d, %llx )", ARG1, ARG2 ); // Nb: can't use "ARG2".."ARG5" here because that's our own macro... PRE_REG_READ2(long, "arch_prctl", int, option, unsigned long, arg2); // XXX: totally wrong... we need to look at the 'option' arg, and do // PRE_MEM_READs/PRE_MEM_WRITEs as necessary... /* "do" the syscall ourselves; the kernel never sees it */ vg_assert(ARG1 == ARCH_SET_FS); tst->arch.vex.guest_FS_ZERO = ARG2; SET_RESULT( 0 ); } PRE(sys_socket, 0) { PRINT("sys_socket ( %d, %d, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol); } POST(sys_socket) { UWord r = VG_(generic_POST_sys_socket)(tid, RES); SET_RESULT(r); } PRE(sys_setsockopt, 0) { PRINT("sys_setsockopt ( %d, %d, %d, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "setsockopt", int, s, int, level, int, optname, const void *, optval, int, optlen); VG_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_getsockopt, 0) { PRINT("sys_getsockopt ( %d, %d, %d, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "getsockopt", int, s, int, level, int, optname, void *, optval, int, *optlen); VG_(generic_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); } POST(sys_getsockopt) { VG_(generic_POST_sys_getsockopt)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_connect, MayBlock) { PRINT("sys_connect ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "connect", int, sockfd, struct sockaddr *, serv_addr, int, addrlen); VG_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3); } PRE(sys_accept, MayBlock) { PRINT("sys_accept ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "accept", int, s, struct sockaddr *, addr, int, *addrlen); VG_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3); } POST(sys_accept) { UWord r = VG_(generic_POST_sys_accept)(tid, RES,ARG1,ARG2,ARG3); SET_RESULT(r); } PRE(sys_sendto, MayBlock) { PRINT("sys_sendto ( %d, %s, %d, %u, %p, %d )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "sendto", int, s, const void *, msg, int, len, unsigned int, flags, const struct sockaddr *, to, int, tolen); VG_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_recvfrom, MayBlock) { PRINT("sys_recvfrom ( %d, %p, %d, %u, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); PRE_REG_READ6(long, "recvfrom", int, s, void *, buf, int, len, unsigned int, flags, struct sockaddr *, from, int *, fromlen); VG_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } POST(sys_recvfrom) { VG_(generic_POST_sys_recvfrom)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); } PRE(sys_sendmsg, MayBlock) { PRINT("sys_sendmsg ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "sendmsg", int, s, const struct msghdr *, msg, int, flags); VG_(generic_PRE_sys_sendmsg)(tid, ARG1,ARG2); } PRE(sys_recvmsg, MayBlock) { PRINT("sys_recvmsg ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags); VG_(generic_PRE_sys_recvmsg)(tid, ARG1,ARG2); } POST(sys_recvmsg) { VG_(generic_POST_sys_recvmsg)(tid, RES,ARG1,ARG2); } PRE(sys_shutdown, MayBlock) { PRINT("sys_shutdown ( %d, %d )",ARG1,ARG2); PRE_REG_READ2(int, "shutdown", int, s, int, how); } PRE(sys_bind, 0) { PRINT("sys_bind ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "bind", int, sockfd, struct sockaddr *, my_addr, int, addrlen); VG_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3); } PRE(sys_listen, 0) { PRINT("sys_listen ( %d, %d )",ARG1,ARG2); PRE_REG_READ2(long, "listen", int, s, int, backlog); } PRE(sys_getsockname, 0) { PRINT("sys_getsockname ( %d, %p, %p )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getsockname", int, s, struct sockaddr *, name, int *, namelen); VG_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3); } POST(sys_getsockname) { VG_(generic_POST_sys_getsockname)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_getpeername, 0) { PRINT("sys_getpeername ( %d, %p, %p )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "getpeername", int, s, struct sockaddr *, name, int *, namelen); VG_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3); } POST(sys_getpeername) { VG_(generic_POST_sys_getpeername)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_socketpair, 0) { PRINT("sys_socketpair ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "socketpair", int, d, int, type, int, protocol, int [2], sv); VG_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_socketpair) { VG_(generic_POST_sys_socketpair)(tid, RES,ARG1,ARG2,ARG3,ARG4); } PRE(sys_semget, 0) { PRINT("sys_semget ( %d, %d, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semget", key_t, key, int, nsems, int, semflg); } PRE(sys_semop, MayBlock) { PRINT("sys_semop ( %d, %p, %u )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semop", int, semid, struct sembuf *, sops, unsigned, nsoops); VG_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3); } PRE(sys_semtimedop, MayBlock) { PRINT("sys_semtimedop ( %d, %p, %u, %p )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semtimedop", int, semid, struct sembuf *, sops, unsigned, nsoops, struct timespec *, timeout); VG_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4); } PRE(sys_semctl, 0) { switch (ARG3 & ~VKI_IPC_64) { case VKI_IPC_INFO: case VKI_SEM_INFO: PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct seminfo *, arg); break; case VKI_IPC_STAT: case VKI_SEM_STAT: case VKI_IPC_SET: PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, struct semid_ds *, arg); break; case VKI_GETALL: case VKI_SETALL: PRINT("sys_semctl ( %d, %d, %d, %p )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "semctl", int, semid, int, semnum, int, cmd, unsigned short *, arg); break; default: PRINT("sys_semctl ( %d, %d, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "semctl", int, semid, int, semnum, int, cmd); break; } VG_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4); } POST(sys_semctl) { VG_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4); } PRE(sys_msgget, 0) { PRINT("sys_msgget ( %d, %d )",ARG1,ARG2); PRE_REG_READ2(long, "msgget", key_t, key, int, msgflg); } PRE(sys_msgsnd, 0) { PRINT("sys_msgsnd ( %d, %p, %d, %d )",ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(long, "msgsnd", int, msqid, struct msgbuf *, msgp, size_t, msgsz, int, msgflg); VG_(generic_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4); /* if ((ARG4 & VKI_IPC_NOWAIT) == 0) tst->sys_flags |= MayBlock; */ } PRE(sys_msgrcv, 0) { PRINT("sys_msgrcv ( %d, %p, %d, %d, %d )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(long, "msgrcv", int, msqid, struct msgbuf *, msgp, size_t, msgsz, long, msgytp, int, msgflg); VG_(generic_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5); /* if ((ARG4 & VKI_IPC_NOWAIT) == 0) tst->sys_flags |= MayBlock; */ } POST(sys_msgrcv) { VG_(generic_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5); } PRE(sys_msgctl, 0) { PRINT("sys_msgctl ( %d, %d, %p )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "msgctl", int, msqid, int, cmd, struct msqid_ds *, buf); VG_(generic_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3); } POST(sys_msgctl) { VG_(generic_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmget, 0) { PRINT("sys_shmget ( %d, %d, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmget", key_t, key, size_t, size, int, shmflg); } PRE(wrap_sys_shmat, 0) { PRINT("wrap_sys_shmat ( %d, %p, %d )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmat", int, shmid, const void *, shmaddr, int, shmflg); ARG2 = VG_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3); if (ARG2 == 0) SET_RESULT( -VKI_EINVAL ); } POST(wrap_sys_shmat) { VG_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3); } PRE(sys_shmdt, 0) { PRINT("sys_shmdt ( %p )",ARG1); PRE_REG_READ1(long, "shmdt", const void *, shmaddr); if (!VG_(generic_PRE_sys_shmdt)(tid, ARG1)) SET_RESULT( -VKI_EINVAL ); } POST(sys_shmdt) { VG_(generic_POST_sys_shmdt)(tid, RES,ARG1); } PRE(sys_shmctl, 0) { PRINT("sys_shmctl ( %d, %d, %p )",ARG1,ARG2,ARG3); PRE_REG_READ3(long, "shmctl", int, shmid, int, cmd, struct shmid_ds *, buf); VG_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3); } POST(sys_shmctl) { VG_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3); } #undef PRE #undef POST /* --------------------------------------------------------------------- The AMD64/Linux syscall table ------------------------------------------------------------------ */ // Macros for adding AMD64/Linux-specific wrappers to the syscall table. #define PLAX_(const, name) SYS_WRAPPER_ENTRY_X_(amd64_linux, const, name) #define PLAXY(const, name) SYS_WRAPPER_ENTRY_XY(amd64_linux, const, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm-x86_64/unistd.h) to the appropriate PRE/POST sys_foo() // wrappers on AMD64 (as per sys_call_table in // linux/arch/x86_64/kernel/entry.S). // // When implementing these wrappers, you need to work out if the wrapper is // generic, Linux-only (but arch-independent), or AMD64/Linux only. const struct SyscallTableEntry VGA_(syscall_table)[] = { GENXY(__NR_read, sys_read), // 0 GENX_(__NR_write, sys_write), // 1 GENXY(__NR_open, sys_open), // 2 GENXY(__NR_close, sys_close), // 3 GENXY(__NR_stat, sys_newstat), // 4 GENXY(__NR_fstat, sys_newfstat), // 5 GENXY(__NR_lstat, sys_newlstat), // 6 GENXY(__NR_poll, sys_poll), // 7 GENX_(__NR_lseek, sys_lseek), // 8 GENXY(__NR_mmap, sys_mmap2), // 9 GENXY(__NR_mprotect, sys_mprotect), // 10 GENXY(__NR_munmap, sys_munmap), // 11 GENX_(__NR_brk, sys_brk), // 12 GENXY(__NR_rt_sigaction, sys_rt_sigaction), // 13 GENXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 14 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 15 GENXY(__NR_ioctl, sys_ioctl), // 16 GENXY(__NR_pread64, sys_pread64), // 17 // (__NR_pwrite64, sys_pwrite64), // 18 GENXY(__NR_readv, sys_readv), // 19 GENX_(__NR_writev, sys_writev), // 20 GENX_(__NR_access, sys_access), // 21 GENXY(__NR_pipe, sys_pipe), // 22 GENX_(__NR_select, sys_select), // 23 // (__NR_sched_yield, sys_sched_yield), // 24 GENX_(__NR_mremap, sys_mremap), // 25 // (__NR_msync, sys_msync), // 26 // (__NR_mincore, sys_mincore), // 27 GENX_(__NR_madvise, sys_madvise), // 28 PLAX_(__NR_shmget, sys_shmget), // 29 PLAXY(__NR_shmat, wrap_sys_shmat), // 30 PLAXY(__NR_shmctl, sys_shmctl), // 31 GENXY(__NR_dup, sys_dup), // 32 GENXY(__NR_dup2, sys_dup2), // 33 GENX_(__NR_pause, sys_pause), // 34 GENXY(__NR_nanosleep, sys_nanosleep), // 35 GENXY(__NR_getitimer, sys_getitimer), // 36 GENX_(__NR_alarm, sys_alarm), // 37 GENXY(__NR_setitimer, sys_setitimer), // 38 GENX_(__NR_getpid, sys_getpid), // 39 // (__NR_sendfile, sys_sendfile64), // 40 PLAXY(__NR_socket, sys_socket), // 41 PLAX_(__NR_connect, sys_connect), // 42 PLAXY(__NR_accept, sys_accept), // 43 PLAX_(__NR_sendto, sys_sendto), // 44 PLAXY(__NR_recvfrom, sys_recvfrom), // 45 PLAX_(__NR_sendmsg, sys_sendmsg), // 46 PLAXY(__NR_recvmsg, sys_recvmsg), // 47 PLAX_(__NR_shutdown, sys_shutdown), // 48 PLAX_(__NR_bind, sys_bind), // 49 PLAX_(__NR_listen, sys_listen), // 50 PLAXY(__NR_getsockname, sys_getsockname), // 51 PLAXY(__NR_getpeername, sys_getpeername), // 52 PLAXY(__NR_socketpair, sys_socketpair), // 53 PLAX_(__NR_setsockopt, sys_setsockopt), // 54 PLAXY(__NR_getsockopt, sys_getsockopt), // 55 PLAX_(__NR_clone, sys_clone), // 56 GENX_(__NR_fork, sys_fork), // 57 GENX_(__NR_vfork, sys_fork), // 58 treat as fork GENX_(__NR_execve, sys_execve), // 59 GENX_(__NR_exit, sys_exit), // 60 GENXY(__NR_wait4, sys_wait4), // 61 GENX_(__NR_kill, sys_kill), // 62 GENXY(__NR_uname, sys_newuname), // 63 PLAX_(__NR_semget, sys_semget), // 64 PLAX_(__NR_semop, sys_semop), // 65 PLAXY(__NR_semctl, sys_semctl), // 66 PLAXY(__NR_shmdt, sys_shmdt), // 67 PLAX_(__NR_msgget, sys_msgget), // 68 PLAX_(__NR_msgsnd, sys_msgsnd), // 69 PLAXY(__NR_msgrcv, sys_msgrcv), // 70 PLAXY(__NR_msgctl, sys_msgctl), // 71 GENXY(__NR_fcntl, sys_fcntl), // 72 // (__NR_flock, sys_flock), // 73 GENX_(__NR_fsync, sys_fsync), // 74 GENX_(__NR_fdatasync, sys_fdatasync), // 75 // (__NR_truncate, sys_truncate), // 76 GENX_(__NR_ftruncate, sys_ftruncate), // 77 GENXY(__NR_getdents, sys_getdents), // 78 GENXY(__NR_getcwd, sys_getcwd), // 79 GENX_(__NR_chdir, sys_chdir), // 80 GENX_(__NR_fchdir, sys_fchdir), // 81 GENX_(__NR_rename, sys_rename), // 82 GENX_(__NR_mkdir, sys_mkdir), // 83 GENX_(__NR_rmdir, sys_rmdir), // 84 GENXY(__NR_creat, sys_creat), // 85 GENX_(__NR_link, sys_link), // 86 GENX_(__NR_unlink, sys_unlink), // 87 GENX_(__NR_symlink, sys_symlink), // 88 GENX_(__NR_readlink, sys_readlink), // 89 GENX_(__NR_chmod, sys_chmod), // 90 GENX_(__NR_fchmod, sys_fchmod), // 91 GENX_(__NR_chown, sys_chown), // 92 GENX_(__NR_fchown, sys_fchown), // 93 // (__NR_lchown, sys_lchown), // 94 GENX_(__NR_umask, sys_umask), // 95 GENXY(__NR_gettimeofday, sys_gettimeofday), // 96 GENXY(__NR_getrlimit, sys_getrlimit), // 97 GENXY(__NR_getrusage, sys_getrusage), // 98 // (__NR_sysinfo, sys_sysinfo), // 99 GENXY(__NR_times, sys_times), // 100 // (__NR_ptrace, sys_ptrace), // 101 GENX_(__NR_getuid, sys_getuid), // 102 // (__NR_syslog, sys_syslog), // 103 GENX_(__NR_getgid, sys_getgid), // 104 GENX_(__NR_setuid, sys_setuid), // 105 GENX_(__NR_setgid, sys_setgid), // 106 GENX_(__NR_geteuid, sys_geteuid), // 107 GENX_(__NR_getegid, sys_getegid), // 108 GENX_(__NR_setpgid, sys_setpgid), // 109 GENX_(__NR_getppid, sys_getppid), // 110 GENX_(__NR_getpgrp, sys_getpgrp), // 111 GENX_(__NR_setsid, sys_setsid), // 112 // (__NR_setreuid, sys_setreuid), // 113 // (__NR_setregid, sys_setregid), // 114 GENXY(__NR_getgroups, sys_getgroups), // 115 GENX_(__NR_setgroups, sys_setgroups), // 116 LINX_(__NR_setresuid, sys_setresuid), // 117 LINXY(__NR_getresuid, sys_getresuid), // 118 LINX_(__NR_setresgid, sys_setresgid), // 119 LINXY(__NR_getresgid, sys_getresgid), // 120 GENX_(__NR_getpgid, sys_getpgid), // 121 // (__NR_setfsuid, sys_setfsuid), // 122 // (__NR_setfsgid, sys_setfsgid), // 123 // (__NR_getsid, sys_getsid), // 124 // (__NR_capget, sys_capget), // 125 // (__NR_capset, sys_capset), // 126 GENXY(__NR_rt_sigpending, sys_rt_sigpending), // 127 GENXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 128 GENXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 129 GENX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 130 GENXY(__NR_sigaltstack, sys_sigaltstack), // 131 GENX_(__NR_utime, sys_utime), // 132 GENX_(__NR_mknod, sys_mknod), // 133 // (__NR_uselib, sys_uselib), // 134 // (__NR_personality, sys_personality), // 135 // (__NR_ustat, sys_ustat), // 136 GENXY(__NR_statfs, sys_statfs), // 137 // (__NR_fstatfs, sys_fstatfs), // 138 // (__NR_sysfs, sys_sysfs), // 139 // (__NR_getpriority, sys_getpriority), // 140 // (__NR_setpriority, sys_setpriority), // 141 GENXY(__NR_sched_setparam, sys_sched_setparam), // 142 GENXY(__NR_sched_getparam, sys_sched_getparam), // 143 GENX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 144 GENX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 145 GENX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 146 GENX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 147 // (__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 148 GENX_(__NR_mlock, sys_mlock), // 149 GENX_(__NR_munlock, sys_munlock), // 150 GENX_(__NR_mlockall, sys_mlockall), // 151 GENX_(__NR_munlockall, sys_munlockall), // 152 // (__NR_vhangup, sys_vhangup), // 153 // (__NR_modify_ldt, sys_modify_ldt), // 154 // (__NR_pivot_root, sys_pivot_root), // 155 LINXY(__NR__sysctl, sys_sysctl), // 156 // (__NR_prctl, sys_prctl), // 157 PLAX_(__NR_arch_prctl, sys_arch_prctl), // 158 // (__NR_adjtimex, sys_adjtimex), // 159 GENX_(__NR_setrlimit, sys_setrlimit), // 160 GENX_(__NR_chroot, sys_chroot), // 161 GENX_(__NR_sync, sys_sync), // 162 // (__NR_acct, sys_acct), // 163 // (__NR_settimeofday, sys_settimeofday), // 164 LINX_(__NR_mount, sys_mount), // 165 // (__NR_umount2, sys_umount), // 166 // (__NR_swapon, sys_swapon), // 167 // (__NR_swapoff, sys_swapoff), // 168 // (__NR_reboot, sys_reboot), // 169 // (__NR_sethostname, sys_sethostname), // 170 // (__NR_setdomainname, sys_setdomainname), // 171 // (__NR_iopl, stub_iopl), // 172 // (__NR_ioperm, sys_ioperm), // 173 // (__NR_create_module, sys_ni_syscall), // 174 // (__NR_init_module, sys_init_module), // 175 // (__NR_delete_module, sys_delete_module), // 176 // (__NR_get_kernel_syms, sys_ni_syscall), // 177 // (__NR_query_module, sys_ni_syscall), // 178 // (__NR_quotactl, sys_quotactl), // 179 // (__NR_nfsservctl, sys_nfsservctl), // 180 // (__NR_getpmsg, sys_ni_syscall), // 181 // (__NR_putpmsg, sys_ni_syscall), // 182 // (__NR_afs_syscall, sys_ni_syscall), // 183 // (__NR_tuxcall, sys_ni_syscall), // 184 // (__NR_security, sys_ni_syscall), // 185 LINX_(__NR_gettid, sys_gettid), // 186 // (__NR_readahead, sys_readahead), // 187 // (__NR_setxattr, sys_setxattr), // 188 // (__NR_lsetxattr, sys_lsetxattr), // 189 // (__NR_fsetxattr, sys_fsetxattr), // 190 GENXY(__NR_getxattr, sys_getxattr), // 191 // (__NR_lgetxattr, sys_lgetxattr), // 192 // (__NR_fgetxattr, sys_fgetxattr), // 193 // (__NR_listxattr, sys_listxattr), // 194 // (__NR_llistxattr, sys_llistxattr), // 195 // (__NR_flistxattr, sys_flistxattr), // 196 // (__NR_removexattr, sys_removexattr), // 197 // (__NR_lremovexattr, sys_lremovexattr), // 198 // (__NR_fremovexattr, sys_fremovexattr), // 199 // (__NR_tkill, sys_tkill), // 200 GENXY(__NR_time, sys_time), /*was sys_time64*/ // 201 LINXY(__NR_futex, sys_futex), // 202 // (__NR_sched_setaffinity, sys_sched_setaffinity), // 203 // (__NR_sched_getaffinity, sys_sched_getaffinity), // 204 // (__NR_set_thread_area, sys_ni_syscall), // 205 LINX_(__NR_io_setup, sys_io_setup), // 206 LINX_(__NR_io_destroy, sys_io_destroy), // 207 LINXY(__NR_io_getevents, sys_io_getevents), // 208 LINX_(__NR_io_submit, sys_io_submit), // 209 LINXY(__NR_io_cancel, sys_io_cancel), // 210 // (__NR_get_thread_area, sys_ni_syscall), // 211 // (__NR_lookup_dcookie, sys_lookup_dcookie), // 212 // (__NR_epoll_create, sys_epoll_create), // 213 // (__NR_epoll_ctl_old, sys_ni_syscall), // 214 // (__NR_epoll_wait_old, sys_ni_syscall), // 215 // (__NR_remap_file_pages, sys_remap_file_pages)// 216 GENXY(__NR_getdents64, sys_getdents64), // 217 GENX_(__NR_set_tid_address, sys_set_tid_address),// 218 // (__NR_restart_syscall, sys_restart_syscall),// 219 PLAX_(__NR_semtimedop, sys_semtimedop), // 220 LINX_(__NR_fadvise64, sys_fadvise64), // 221 // (__NR_timer_create, sys_timer_create), // 222 // (__NR_timer_settime, sys_timer_settime), // 223 // (__NR_timer_gettime, sys_timer_gettime), // 224 // (__NR_timer_getoverrun, sys_timer_getoverrun)// 225 // (__NR_timer_delete, sys_timer_delete), // 226 // (__NR_clock_settime, sys_clock_settime), // 227 GENXY(__NR_clock_gettime, sys_clock_gettime), // 228 // (__NR_clock_getres, sys_clock_getres), // 229 // (__NR_clock_nanosleep, sys_clock_nanosleep),// 230 LINX_(__NR_exit_group, sys_exit_group), // 231 // (__NR_epoll_wait, sys_epoll_wait), // 232 // (__NR_epoll_ctl, sys_epoll_ctl), // 233 LINXY(__NR_tgkill, sys_tgkill), // 234 // (__NR_utimes, sys_utimes), // 235 // (__NR_vserver, sys_ni_syscall), // 236 // (__NR_vserver, sys_ni_syscall), // 236 // (__NR_mbind, sys_mbind), // 237 // (__NR_set_mempolicy, sys_set_mempolicy), // 238 // (__NR_get_mempolicy, sys_get_mempolicy), // 239 GENXY(__NR_mq_open, sys_mq_open), // 240 GENX_(__NR_mq_unlink, sys_mq_unlink), // 241 GENX_(__NR_mq_timedsend, sys_mq_timedsend), // 242 GENX_(__NR_mq_timedreceive, sys_mq_timedreceive),// 243 GENX_(__NR_mq_notify, sys_mq_notify), // 244 GENXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 245 // (__NR_kexec_load, sys_ni_syscall), // 246 // (__NR_waitid, sys_waitid), // 247 }; const UInt VGA_(syscall_table_size) = sizeof(VGA_(syscall_table)) / sizeof(VGA_(syscall_table)[0]); //void VG_(clear_TLS_for_thread) ( VgLdtEntry* tls ) //{ //} /*--------------------------------------------------------------------*/ /*--- end amd64-linux/syscalls.c ---*/ /*--------------------------------------------------------------------*/