/*--------------------------------------------------------------------*/ /*--- A pool (memory) allocator that avoids duplicated copies. ---*/ /*--- m_deduppoolalloc.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2014-2014 Philippe Waroquiers philippe.waroquiers@skynet.be This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_core_basics.h" #include "pub_core_libcbase.h" #include "pub_core_libcprint.h" #include "pub_core_libcassert.h" #include "pub_core_xarray.h" #include "pub_core_deduppoolalloc.h" /* self */ #include "pub_core_hashtable.h" #include "pub_core_poolalloc.h" #include "pub_core_options.h" #include "pub_core_mallocfree.h" #include "pub_core_debuglog.h" struct _DedupPoolAlloc { SizeT poolSzB; /* Minimum size of a pool. */ SizeT fixedSzb; /* If using VG_(allocFixedEltDedupPA), size of elements */ SizeT eltAlign; void* (*alloc_fn)(const HChar*, SizeT); /* pool allocator */ const HChar* cc; /* pool allocator's cost centre */ void (*free_fn)(void*); /* pool allocator's deallocation function */ /* XArray of void* (pointers to pools). The pools themselves. Each element is a pointer to a block of size at least PoolSzB bytes. The last block might be smaller due to a call to shrink_block. */ XArray *pools; /* hash table of pool elements, used to dedup. If NULL, it means the DedupPoolAlloc is frozen. */ VgHashTable *ht_elements; /* Hash table nodes of pool_elements are allocated with a pool, to decrease memory overhead during insertion in the DedupPoolAlloc. */ PoolAlloc *ht_node_pa; UChar *curpool; /* last allocated pool. */ UChar *curpool_free; /* Pos in current pool to allocate next elt. always aligned on eltAlign. */ UChar *curpool_limit; /* Last pos in current pool. */ /* Note that for a fixed size pool, we only have a single pool to allow simple/fast indexing. This single pool is grown, which might change the address of the already allocated elements. */ /* Total nr of alloc calls, resulting in (we hope) a lot less real (dedup) elements. */ ULong nr_alloc_calls; }; typedef struct _ht_node { struct _ht_node *next; // Read/Write by hashtable (pub_tool_hashtable.h) UWord key; // Read by hashtable (pub_tool_hashtable.h) SizeT eltSzB; const void *elt; } ht_node; DedupPoolAlloc* VG_(newDedupPA) ( SizeT poolSzB, SizeT eltAlign, void* (*alloc_fn)(const HChar*, SizeT), const HChar* cc, void (*free_fn)(void*) ) { DedupPoolAlloc* ddpa; vg_assert(poolSzB >= eltAlign); vg_assert(poolSzB >= 100); /* let's say */ vg_assert(poolSzB >= 10*eltAlign); /* let's say */ vg_assert(alloc_fn); vg_assert(cc); vg_assert(free_fn); ddpa = alloc_fn(cc, sizeof(*ddpa)); VG_(memset)(ddpa, 0, sizeof(*ddpa)); ddpa->poolSzB = poolSzB; ddpa->fixedSzb = 0; ddpa->eltAlign = eltAlign; ddpa->alloc_fn = alloc_fn; ddpa->cc = cc; ddpa->free_fn = free_fn; ddpa->pools = VG_(newXA)( alloc_fn, cc, free_fn, sizeof(void*) ); ddpa->ht_elements = VG_(HT_construct) (cc); ddpa->ht_node_pa = VG_(newPA) ( sizeof(ht_node), 1000, alloc_fn, cc, free_fn); ddpa->curpool = NULL; ddpa->curpool_limit = NULL; ddpa->curpool_free = NULL; return ddpa; } void VG_(deleteDedupPA) ( DedupPoolAlloc* ddpa) { Word i; if (ddpa->ht_elements) // Free data structures used for insertion. VG_(freezeDedupPA) (ddpa, NULL); for (i = 0; i < VG_(sizeXA) (ddpa->pools); i++) ddpa->free_fn (*(UWord **)VG_(indexXA) ( ddpa->pools, i )); VG_(deleteXA) (ddpa->pools); ddpa->free_fn (ddpa); } static __inline__ UChar* ddpa_align ( DedupPoolAlloc* ddpa, UChar *c ) { return (UChar*)VG_ROUNDUP(c, ddpa->eltAlign); } /* Allocate a new pool or grow the (only) pool for a fixed size ddpa. */ __attribute__((noinline)) static void ddpa_add_new_pool_or_grow ( DedupPoolAlloc* ddpa ) { vg_assert(ddpa); if (ddpa->fixedSzb > 0 && ddpa->curpool != NULL) { // Grow (* 2) the current (fixed elt) pool UChar *curpool_align = ddpa_align(ddpa, ddpa->curpool); SizeT curpool_used = ddpa->curpool_free - curpool_align; SizeT curpool_size = ddpa->curpool_limit - ddpa->curpool + 1; UChar *newpool = ddpa->alloc_fn (ddpa->cc, 2 * curpool_size); UChar *newpool_free = ddpa_align (ddpa, newpool); UChar *newpool_limit = newpool + 2 * curpool_size - 1; Word reloc_offset = (Addr)newpool_free - (Addr)curpool_align; ht_node *n; VG_(memcpy) (newpool_free, curpool_align, curpool_used); /* We have reallocated the (only) pool. We need to relocate the pointers in the hash table nodes. */ VG_(HT_ResetIter) (ddpa->ht_elements); while ((n = VG_(HT_Next) (ddpa->ht_elements))) { n->elt = (void*)((Addr)n->elt + reloc_offset); } newpool_free += curpool_used; VG_(dropHeadXA) (ddpa->pools, 1); ddpa->free_fn (ddpa->curpool); ddpa->curpool = newpool; ddpa->curpool_free = newpool_free; ddpa->curpool_limit = newpool_limit; VG_(addToXA)( ddpa->pools, &ddpa->curpool); } else { /* Allocate a new pool, or allocate the first/only pool for a fixed size ddpa. */ ddpa->curpool = ddpa->alloc_fn( ddpa->cc, ddpa->poolSzB); ddpa->curpool_limit = ddpa->curpool + ddpa->poolSzB - 1; ddpa->curpool_free = ddpa_align (ddpa, ddpa->curpool); /* add to our collection of pools */ VG_(addToXA)( ddpa->pools, &ddpa->curpool ); } } static Word cmp_pool_elt (const void* node1, const void* node2 ) { const ht_node* hnode1 = node1; const ht_node* hnode2 = node2; if (hnode1->key < hnode2->key) return -1; else if (hnode1->key > hnode2->key) return 1; else if (hnode1->eltSzB == hnode2->eltSzB) return VG_(memcmp) (hnode1->elt, hnode2->elt, hnode1->eltSzB); else if (hnode1->eltSzB < hnode2->eltSzB) return -1; else return 1; } /* Print some stats. */ static void print_stats (DedupPoolAlloc *ddpa) { VG_(message)(Vg_DebugMsg, "dedupPA:%s %ld allocs (%d uniq)" " %ld pools (%ld bytes free in last pool)\n", ddpa->cc, (long int) ddpa->nr_alloc_calls, VG_(HT_count_nodes)(ddpa->ht_elements), VG_(sizeXA)(ddpa->pools), ddpa->curpool ? (long int) (ddpa->curpool_limit - ddpa->curpool_free + 1) : 0); VG_(HT_print_stats) (ddpa->ht_elements, cmp_pool_elt); } /* Dummy free, as the ht elements are allocated in a pool, and we will destroy the pool in one single operation. */ static void htelem_dummyfree(void* ht_elem) { } void VG_(freezeDedupPA) (DedupPoolAlloc *ddpa, void (*shrink_block)(void*, SizeT)) { if (VG_(clo_stats) && (VG_(clo_verbosity) > 2 || VG_(debugLog_getLevel) () >= 2)) { print_stats(ddpa); } vg_assert (!ddpa->fixedSzb || VG_(sizeXA) (ddpa->pools) == 1); if (shrink_block && ddpa->curpool_limit > ddpa->curpool_free) (*shrink_block)(ddpa->curpool, ddpa->curpool_free - ddpa->curpool); VG_(HT_destruct) ( ddpa->ht_elements, htelem_dummyfree); ddpa->ht_elements = NULL; VG_(deletePA) (ddpa->ht_node_pa); ddpa->ht_node_pa = NULL; } const void* VG_(allocEltDedupPA) (DedupPoolAlloc *ddpa, SizeT eltSzB, const void *elt) { ht_node ht_elt; void* elt_ins; ht_node *ht_ins; vg_assert(ddpa); vg_assert(ddpa->ht_elements); vg_assert (eltSzB <= ddpa->poolSzB); ddpa->nr_alloc_calls++; // Currently using adler32 as hash function. // Many references tells adler32 is bad as a hash function. // And effectively, some tests on dwarf debug string shows // a lot of collisions (at least for short elements). // (A lot can be 10% of the elements colliding, even on // small nr of elements such as 10_000). ht_elt.key = VG_(adler32) (0, NULL, 0); ht_elt.key = VG_(adler32) (ht_elt.key, elt, eltSzB); ht_elt.eltSzB = eltSzB; ht_elt.elt = elt; ht_ins = VG_(HT_gen_lookup) (ddpa->ht_elements, &ht_elt, cmp_pool_elt); if (ht_ins) return ht_ins->elt; /* Not found -> we need to allocate a new element from the pool and insert it in the hash table of inserted elements. */ // Add a new pool or grow pool if not enough space in the current pool if (UNLIKELY(ddpa->curpool_free == NULL || ddpa->curpool_free + eltSzB - 1 > ddpa->curpool_limit)) { ddpa_add_new_pool_or_grow (ddpa); } elt_ins = ddpa->curpool_free; VG_(memcpy)(elt_ins, elt, eltSzB); ddpa->curpool_free = ddpa_align(ddpa, ddpa->curpool_free + eltSzB); ht_ins = VG_(allocEltPA) (ddpa->ht_node_pa); ht_ins->key = ht_elt.key; ht_ins->eltSzB = eltSzB; ht_ins->elt = elt_ins; VG_(HT_add_node)(ddpa->ht_elements, ht_ins); return elt_ins; } static __inline__ UInt elt2nr (DedupPoolAlloc *ddpa, const void *dedup_elt) { vg_assert (dedup_elt >= (const void *)ddpa->curpool && dedup_elt < (const void *)ddpa->curpool_free); return 1 + ((const UChar*)dedup_elt - (const UChar *)ddpa->curpool) / VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign); } UInt VG_(allocFixedEltDedupPA) (DedupPoolAlloc *ddpa, SizeT eltSzB, const void *elt) { if (ddpa->fixedSzb == 0) { // First insertion in this ddpa vg_assert (ddpa->nr_alloc_calls == 0); vg_assert (eltSzB > 0); ddpa->fixedSzb = eltSzB; } vg_assert (ddpa->fixedSzb == eltSzB); const void *dedup_elt = VG_(allocEltDedupPA) (ddpa, eltSzB, elt); return elt2nr (ddpa, dedup_elt); } void* VG_(indexEltNumber) (DedupPoolAlloc *ddpa, UInt eltNr) { void *dedup_elt; dedup_elt = ddpa->curpool + (eltNr - 1) * VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign); vg_assert ((UChar*)dedup_elt >= ddpa->curpool && (UChar*)dedup_elt < ddpa->curpool_free); return dedup_elt; } UInt VG_(sizeDedupPA) (DedupPoolAlloc *ddpa) { if (ddpa->curpool == NULL) return 0; vg_assert (ddpa->fixedSzb); return (ddpa->curpool_free - ddpa_align(ddpa, ddpa->curpool)) / VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign); }