/*--------------------------------------------------------------------*/ /*--- Format-neutral storage of and querying of info acquired from ---*/ /*--- ELF/XCOFF stabs/dwarf1/dwarf2/dwarf3 debug info. ---*/ /*--- storage.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2008 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* This file manages the data structures built by the debuginfo system. These are: the top level SegInfo list. For each SegInfo, there are tables for for address-to-symbol mappings, address-to-src-file/line mappings, and address-to-CFI-info mappings. */ #include "pub_core_basics.h" #include "pub_core_options.h" /* VG_(clo_verbosity) */ #include "pub_core_libcassert.h" #include "pub_core_libcbase.h" #include "pub_core_libcprint.h" #include "pub_core_xarray.h" #include "pub_core_oset.h" #include "priv_misc.h" /* dinfo_zalloc/free/strdup */ #include "priv_d3basics.h" /* ML_(pp_GX) */ #include "priv_tytypes.h" #include "priv_storage.h" /* self */ /*------------------------------------------------------------*/ /*--- Misc (printing, errors) ---*/ /*------------------------------------------------------------*/ /* Show a non-fatal debug info reading error. Use vg_panic if terminal. 'serious' errors are shown regardless of the verbosity setting. */ void ML_(symerr) ( struct _DebugInfo* di, Bool serious, HChar* msg ) { /* XML mode hides everything :-( */ if (VG_(clo_xml)) return; if (serious) { VG_(message)(Vg_DebugMsg, "WARNING: Serious error when " "reading debug info"); if (True || VG_(clo_verbosity) < 2) { /* Need to show what the file name is, at verbosity levels 2 or below, since that won't already have been shown */ VG_(message)(Vg_DebugMsg, "When reading debug info from %s:", (di && di->filename) ? di->filename : (UChar*)"???"); } VG_(message)(Vg_DebugMsg, "%s", msg); } else { /* !serious */ if (VG_(clo_verbosity) >= 2) VG_(message)(Vg_DebugMsg, "%s", msg); } } /* Print a symbol. */ void ML_(ppSym) ( Int idx, DiSym* sym ) { VG_(printf)( "%5d: %#8lx .. %#8lx (%d) %s\n", idx, sym->addr, sym->addr + sym->size - 1, sym->size, sym->name ); } /* Print a call-frame-info summary. */ void ML_(ppDiCfSI) ( XArray* /* of CfiExpr */ exprs, DiCfSI* si ) { # define SHOW_HOW(_how, _off) \ do { \ if (_how == CFIR_UNKNOWN) { \ VG_(printf)("Unknown"); \ } else \ if (_how == CFIR_SAME) { \ VG_(printf)("Same"); \ } else \ if (_how == CFIR_CFAREL) { \ VG_(printf)("cfa+%d", _off); \ } else \ if (_how == CFIR_MEMCFAREL) { \ VG_(printf)("*(cfa+%d)", _off); \ } else \ if (_how == CFIR_EXPR) { \ VG_(printf)("{"); \ ML_(ppCfiExpr)(exprs, _off); \ VG_(printf)("}"); \ } else { \ vg_assert(0+0); \ } \ } while (0) VG_(printf)("[%#lx .. %#lx]: ", si->base, si->base + (UWord)si->len - 1); switch (si->cfa_how) { case CFIC_SPREL: VG_(printf)("let cfa=oldSP+%d", si->cfa_off); break; case CFIC_FPREL: VG_(printf)("let cfa=oldFP+%d", si->cfa_off); break; case CFIC_EXPR: VG_(printf)("let cfa={"); ML_(ppCfiExpr)(exprs, si->cfa_off); VG_(printf)("}"); break; default: vg_assert(0); } VG_(printf)(" in RA="); SHOW_HOW(si->ra_how, si->ra_off); VG_(printf)(" SP="); SHOW_HOW(si->sp_how, si->sp_off); VG_(printf)(" FP="); SHOW_HOW(si->fp_how, si->fp_off); VG_(printf)("\n"); # undef SHOW_HOW } /*------------------------------------------------------------*/ /*--- Adding stuff ---*/ /*------------------------------------------------------------*/ /* Add a str to the string table, including terminating zero, and return pointer to the string in vg_strtab. Unless it's been seen recently, in which case we find the old pointer and return that. This avoids the most egregious duplications. JSGF: changed from returning an index to a pointer, and changed to a chunking memory allocator rather than reallocating, so the pointers are stable. */ UChar* ML_(addStr) ( struct _DebugInfo* di, UChar* str, Int len ) { struct strchunk *chunk; Int space_needed; UChar* p; if (len == -1) { len = VG_(strlen)(str); } else { vg_assert(len >= 0); } space_needed = 1 + len; // Allocate a new strtab chunk if necessary if (di->strchunks == NULL || (di->strchunks->strtab_used + space_needed) > SEGINFO_STRCHUNKSIZE) { chunk = ML_(dinfo_zalloc)("di.storage.addStr.1", sizeof(*chunk)); chunk->strtab_used = 0; chunk->next = di->strchunks; di->strchunks = chunk; } chunk = di->strchunks; p = &chunk->strtab[chunk->strtab_used]; VG_(memcpy)(p, str, len); chunk->strtab[chunk->strtab_used+len] = '\0'; chunk->strtab_used += space_needed; return p; } /* Add a symbol to the symbol table. */ void ML_(addSym) ( struct _DebugInfo* di, DiSym* sym ) { UInt new_sz, i; DiSym* new_tab; /* Ignore zero-sized syms. */ if (sym->size == 0) return; if (di->symtab_used == di->symtab_size) { new_sz = 2 * di->symtab_size; if (new_sz == 0) new_sz = 500; new_tab = ML_(dinfo_zalloc)( "di.storage.addSym.1", new_sz * sizeof(DiSym) ); if (di->symtab != NULL) { for (i = 0; i < di->symtab_used; i++) new_tab[i] = di->symtab[i]; ML_(dinfo_free)(di->symtab); } di->symtab = new_tab; di->symtab_size = new_sz; } di->symtab[di->symtab_used] = *sym; di->symtab_used++; vg_assert(di->symtab_used <= di->symtab_size); } /* Add a location to the location table. */ static void addLoc ( struct _DebugInfo* di, DiLoc* loc ) { UInt new_sz, i; DiLoc* new_tab; /* Zero-sized locs should have been ignored earlier */ vg_assert(loc->size > 0); if (di->loctab_used == di->loctab_size) { new_sz = 2 * di->loctab_size; if (new_sz == 0) new_sz = 500; new_tab = ML_(dinfo_zalloc)( "di.storage.addLoc.1", new_sz * sizeof(DiLoc) ); if (di->loctab != NULL) { for (i = 0; i < di->loctab_used; i++) new_tab[i] = di->loctab[i]; ML_(dinfo_free)(di->loctab); } di->loctab = new_tab; di->loctab_size = new_sz; } di->loctab[di->loctab_used] = *loc; di->loctab_used++; vg_assert(di->loctab_used <= di->loctab_size); } /* Top-level place to call to add a source-location mapping entry. */ void ML_(addLineInfo) ( struct _DebugInfo* di, UChar* filename, UChar* dirname, /* NULL == directory is unknown */ Addr this, Addr next, Int lineno, Int entry /* only needed for debug printing */ ) { static const Bool debug = False; DiLoc loc; Int size = next - this; /* Ignore zero-sized locs */ if (this == next) return; if (debug) VG_(printf)( " src %s %s line %d %#lx-%#lx\n", dirname ? dirname : (UChar*)"(unknown)", filename, lineno, this, next ); /* Maximum sanity checking. Some versions of GNU as do a shabby * job with stabs entries; if anything looks suspicious, revert to * a size of 1. This should catch the instruction of interest * (since if using asm-level debug info, one instruction will * correspond to one line, unlike with C-level debug info where * multiple instructions can map to the one line), but avoid * catching any other instructions bogusly. */ if (this > next) { if (VG_(clo_verbosity) > 2) { VG_(message)(Vg_DebugMsg, "warning: line info addresses out of order " "at entry %d: 0x%lx 0x%lx", entry, this, next); } size = 1; } if (size > MAX_LOC_SIZE) { if (0) VG_(message)(Vg_DebugMsg, "warning: line info address range too large " "at entry %d: %d", entry, size); size = 1; } /* Rule out ones which are completely outside the r-x mapped area. See "Comment_Regarding_Text_Range_Checks" elsewhere in this file for background and rationale. */ vg_assert(di->have_rx_map && di->have_rw_map); if (next-1 < di->rx_map_avma || this >= di->rx_map_avma + di->rx_map_size ) { if (0) VG_(message)(Vg_DebugMsg, "warning: ignoring line info entry falling " "outside current DebugInfo: %#lx %#lx %#lx %#lx", di->text_avma, di->text_avma + di->text_size, this, next-1); return; } vg_assert(lineno >= 0); if (lineno > MAX_LINENO) { static Bool complained = False; if (!complained) { complained = True; VG_(message)(Vg_UserMsg, "warning: ignoring line info entry with " "huge line number (%d)", lineno); VG_(message)(Vg_UserMsg, " Can't handle line numbers " "greater than %d, sorry", MAX_LINENO); VG_(message)(Vg_UserMsg, "(Nb: this message is only shown once)"); } return; } loc.addr = this; loc.size = (UShort)size; loc.lineno = lineno; loc.filename = filename; loc.dirname = dirname; if (0) VG_(message)(Vg_DebugMsg, "addLoc: addr %#lx, size %d, line %d, file %s", this,size,lineno,filename); addLoc ( di, &loc ); } /* Top-level place to call to add a CFI summary record. The supplied DiCfSI is copied. */ void ML_(addDiCfSI) ( struct _DebugInfo* di, DiCfSI* cfsi ) { static const Bool debug = False; UInt new_sz, i; DiCfSI* new_tab; if (debug) { VG_(printf)("adding DiCfSI: "); ML_(ppDiCfSI)(di->cfsi_exprs, cfsi); } /* sanity */ vg_assert(cfsi->len > 0); /* If this fails, the implication is you have a single procedure with more than 5 million bytes of code. Which is pretty unlikely. Either that, or the debuginfo reader is somehow broken. */ vg_assert(cfsi->len < 5000000); /* Rule out ones which are completely outside the r-x mapped area. See "Comment_Regarding_Text_Range_Checks" elsewhere in this file for background and rationale. */ vg_assert(di->have_rx_map && di->have_rw_map); if (cfsi->base + cfsi->len - 1 < di->rx_map_avma || cfsi->base >= di->rx_map_avma + di->rx_map_size) { static Int complaints = 10; if (VG_(clo_trace_cfi) || complaints > 0) { complaints--; if (VG_(clo_verbosity) > 1) { VG_(message)( Vg_DebugMsg, "warning: DiCfSI %#lx .. %#lx outside segment %#lx .. %#lx", cfsi->base, cfsi->base + cfsi->len - 1, di->text_avma, di->text_avma + di->text_size - 1 ); } if (VG_(clo_trace_cfi)) ML_(ppDiCfSI)(di->cfsi_exprs, cfsi); } return; } if (di->cfsi_used == di->cfsi_size) { new_sz = 2 * di->cfsi_size; if (new_sz == 0) new_sz = 20; new_tab = ML_(dinfo_zalloc)( "di.storage.addDiCfSI.1", new_sz * sizeof(DiCfSI) ); if (di->cfsi != NULL) { for (i = 0; i < di->cfsi_used; i++) new_tab[i] = di->cfsi[i]; ML_(dinfo_free)(di->cfsi); } di->cfsi = new_tab; di->cfsi_size = new_sz; } di->cfsi[di->cfsi_used] = *cfsi; di->cfsi_used++; vg_assert(di->cfsi_used <= di->cfsi_size); } Int ML_(CfiExpr_Undef)( XArray* dst ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Undef; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Deref)( XArray* dst, Int ixAddr ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Deref; e.Cex.Deref.ixAddr = ixAddr; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Const)( XArray* dst, UWord con ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Const; e.Cex.Const.con = con; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_Binop)( XArray* dst, CfiOp op, Int ixL, Int ixR ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_Binop; e.Cex.Binop.op = op; e.Cex.Binop.ixL = ixL; e.Cex.Binop.ixR = ixR; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_CfiReg)( XArray* dst, CfiReg reg ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_CfiReg; e.Cex.CfiReg.reg = reg; return (Int)VG_(addToXA)( dst, &e ); } Int ML_(CfiExpr_DwReg)( XArray* dst, Int reg ) { CfiExpr e; VG_(memset)( &e, 0, sizeof(e) ); e.tag = Cex_DwReg; e.Cex.DwReg.reg = reg; return (Int)VG_(addToXA)( dst, &e ); } static void ppCfiOp ( CfiOp op ) { switch (op) { case Cop_Add: VG_(printf)("+"); break; case Cop_Sub: VG_(printf)("-"); break; case Cop_And: VG_(printf)("&"); break; case Cop_Mul: VG_(printf)("*"); break; default: vg_assert(0); } } static void ppCfiReg ( CfiReg reg ) { switch (reg) { case Creg_SP: VG_(printf)("SP"); break; case Creg_FP: VG_(printf)("FP"); break; case Creg_IP: VG_(printf)("IP"); break; default: vg_assert(0); } } void ML_(ppCfiExpr)( XArray* src, Int ix ) { /* VG_(indexXA) checks for invalid src/ix values, so we can use it indiscriminately. */ CfiExpr* e = (CfiExpr*) VG_(indexXA)( src, ix ); switch (e->tag) { case Cex_Undef: VG_(printf)("Undef"); break; case Cex_Deref: VG_(printf)("*("); ML_(ppCfiExpr)(src, e->Cex.Deref.ixAddr); VG_(printf)(")"); break; case Cex_Const: VG_(printf)("0x%lx", e->Cex.Const.con); break; case Cex_Binop: VG_(printf)("("); ML_(ppCfiExpr)(src, e->Cex.Binop.ixL); VG_(printf)(")"); ppCfiOp(e->Cex.Binop.op); VG_(printf)("("); ML_(ppCfiExpr)(src, e->Cex.Binop.ixR); VG_(printf)(")"); break; case Cex_CfiReg: ppCfiReg(e->Cex.CfiReg.reg); break; case Cex_DwReg: VG_(printf)("dwr%d", e->Cex.DwReg.reg); break; default: VG_(core_panic)("ML_(ppCfiExpr)"); /*NOTREACHED*/ break; } } Word ML_(cmp_for_DiAddrRange_range) ( const void* keyV, const void* elemV ) { const Addr* key = (const Addr*)keyV; const DiAddrRange* elem = (const DiAddrRange*)elemV; if (0) VG_(printf)("cmp_for_DiAddrRange_range: %#lx vs %#lx\n", *key, elem->aMin); if ((*key) < elem->aMin) return -1; if ((*key) > elem->aMax) return 1; return 0; } static void show_scope ( OSet* /* of DiAddrRange */ scope, HChar* who ) { DiAddrRange* range; VG_(printf)("Scope \"%s\" = {\n", who); VG_(OSetGen_ResetIter)( scope ); while (True) { range = VG_(OSetGen_Next)( scope ); if (!range) break; VG_(printf)(" %#lx .. %#lx: %lu vars\n", range->aMin, range->aMax, range->vars ? VG_(sizeXA)(range->vars) : 0); } VG_(printf)("}\n"); } /* Add the variable 'var' to 'scope' for the address range [aMin,aMax] (inclusive of aMin and aMax). Split existing ranges as required if aMin or aMax or both don't match existing range boundaries, and add 'var' to all required ranges. Take great care to preserve the invariant that the ranges in 'scope' cover the entire address range exactly once, with no overlaps and no holes. */ static void add_var_to_arange ( /*MOD*/OSet* /* of DiAddrRange */ scope, Addr aMin, Addr aMax, DiVariable* var ) { DiAddrRange *first, *last, *range; /* These xx variables are for assertion checking only; they don't contribute anything to the actual work of this function. */ DiAddrRange *xxRangep, *xxFirst, *xxLast; UWord xxIters; vg_assert(aMin <= aMax); if (0) VG_(printf)("add_var_to_arange: %#lx .. %#lx\n", aMin, aMax); if (0) show_scope( scope, "add_var_to_arange(1)" ); /* See if the lower end of the range (aMin) falls exactly on an existing range boundary. If not, find the range it does fall into, and split it (copying the variables in the process), so that aMin does exactly fall on a range boundary. */ first = VG_(OSetGen_Lookup)( scope, &aMin ); /* It must be present, since the presented OSet must cover the entire address range. */ vg_assert(first); vg_assert(first->aMin <= first->aMax); vg_assert(first->aMin <= aMin && aMin <= first->aMax); /* Fast track common case, which is that the range specified for the variable exactly coincides with one already-existing range. */ if (first->aMin == aMin && first->aMax == aMax) { vg_assert(first->vars); VG_(addToXA)( first->vars, var ); return; } /* We have to get into splitting ranges, which is complex and slow. */ if (first->aMin < aMin) { DiAddrRange* nyu; /* Ok. We'll have to split 'first'. */ /* truncate the upper end of 'first' */ Addr tmp = first->aMax; first->aMax = aMin-1; vg_assert(first->aMin <= first->aMax); /* create a new range */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); vg_assert(nyu); nyu->aMin = aMin; nyu->aMax = tmp; vg_assert(nyu->aMin <= nyu->aMax); /* copy vars into it */ vg_assert(first->vars); nyu->vars = VG_(cloneXA)( "di.storage.avta.1", first->vars ); vg_assert(nyu->vars); VG_(OSetGen_Insert)( scope, nyu ); first = nyu; } vg_assert(first->aMin == aMin); /* Now do exactly the same for the upper end (aMax): if it doesn't fall on a boundary, cause it to do so by splitting the range it does currently fall into. */ last = VG_(OSetGen_Lookup)( scope, &aMax ); vg_assert(last->aMin <= last->aMax); vg_assert(last->aMin <= aMax && aMax <= last->aMax); if (aMax < last->aMax) { DiAddrRange* nyu; /* We have to split 'last'. */ /* truncate the lower end of 'last' */ Addr tmp = last->aMin; last->aMin = aMax+1; vg_assert(last->aMin <= last->aMax); /* create a new range */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); vg_assert(nyu); nyu->aMin = tmp; nyu->aMax = aMax; vg_assert(nyu->aMin <= nyu->aMax); /* copy vars into it */ vg_assert(last->vars); nyu->vars = VG_(cloneXA)( "di.storage.avta.2", last->vars ); vg_assert(nyu->vars); VG_(OSetGen_Insert)( scope, nyu ); last = nyu; } vg_assert(aMax == last->aMax); xxFirst = (DiAddrRange*)VG_(OSetGen_Lookup)(scope, &aMin); xxLast = (DiAddrRange*)VG_(OSetGen_Lookup)(scope, &aMax); vg_assert(xxFirst); vg_assert(xxLast); vg_assert(xxFirst->aMin == aMin); vg_assert(xxLast->aMax == aMax); if (xxFirst != xxLast) vg_assert(xxFirst->aMax < xxLast->aMin); /* Great. Now we merely need to iterate over the segments from 'first' to 'last' inclusive, and add 'var' to the variable set of each of them. */ if (0) { static UWord ctr = 0; ctr++; VG_(printf)("ctr = %lu\n", ctr); if (ctr >= 33263) show_scope( scope, "add_var_to_arange(2)" ); } xxIters = 0; range = xxRangep = NULL; VG_(OSetGen_ResetIterAt)( scope, &aMin ); while (True) { xxRangep = range; range = VG_(OSetGen_Next)( scope ); if (!range) break; if (range->aMin > aMax) break; xxIters++; if (0) VG_(printf)("have range %#lx %#lx\n", range->aMin, range->aMax); /* Sanity checks */ if (!xxRangep) { /* This is the first in the range */ vg_assert(range->aMin == aMin); } else { vg_assert(xxRangep->aMax + 1 == range->aMin); } vg_assert(range->vars); VG_(addToXA)( range->vars, var ); } /* Done. We should have seen at least one range. */ vg_assert(xxIters >= 1); if (xxIters == 1) vg_assert(xxFirst == xxLast); if (xxFirst == xxLast) vg_assert(xxIters == 1); vg_assert(xxRangep); vg_assert(xxRangep->aMax == aMax); vg_assert(xxRangep == xxLast); } /* Top-level place to call to add a variable description (as extracted from a DWARF3 .debug_info section. */ void ML_(addVar)( struct _DebugInfo* di, Int level, Addr aMin, Addr aMax, UChar* name, /* in di's .strchunks */ UWord typeR, /* a cuOff */ GExpr* gexpr, GExpr* fbGX, UChar* fileName, /* where decl'd - may be NULL. in di's .strchunks */ Int lineNo, /* where decl'd - may be zero */ Bool show ) { OSet* /* of DiAddrRange */ scope; DiVariable var; Bool all; TyEnt* ent; MaybeULong mul; HChar* badness; tl_assert(di && di->admin_tyents); if (0) { VG_(printf)(" ML_(addVar): level %d %#lx-%#lx %s :: ", level, aMin, aMax, name ); ML_(pp_TyEnt_C_ishly)( di->admin_tyents, typeR ); VG_(printf)("\n Var="); ML_(pp_GX)(gexpr); VG_(printf)("\n"); if (fbGX) { VG_(printf)(" FrB="); ML_(pp_GX)( fbGX ); VG_(printf)("\n"); } else { VG_(printf)(" FrB=none\n"); } VG_(printf)("\n"); } vg_assert(level >= 0); vg_assert(aMin <= aMax); vg_assert(name); vg_assert(gexpr); ent = ML_(TyEnts__index_by_cuOff)( di->admin_tyents, NULL, typeR); tl_assert(ent); vg_assert(ML_(TyEnt__is_type)(ent)); /* "Comment_Regarding_Text_Range_Checks" (is referred to elsewhere) ---------------------------------------------------------------- Ignore any variables whose aMin .. aMax (that is, range of text addresses for which they actually exist) falls outside the text segment. Is this indicative of a bug in the reader? Maybe. (LATER): instead of restricting strictly to the .text segment, be a bit more relaxed, and accept any variable whose text range falls inside the r-x mapped area. This is useful because .text is not always the only instruction-carrying segment: others are: .init .plt __libc_freeres_fn and .fini. This implicitly assumes that those extra sections have the same bias as .text, but that seems a reasonable assumption to me. */ /* This is assured us by top level steering logic in debuginfo.c, and it is re-checked at the start of ML_(read_elf_debug_info). */ vg_assert(di->have_rx_map && di->have_rw_map); if (level > 0 && (aMax < di->rx_map_avma || aMin >= di->rx_map_avma + di->rx_map_size)) { if (VG_(clo_verbosity) >= 0) { VG_(message)(Vg_DebugMsg, "warning: addVar: in range %#lx .. %#lx outside " "segment %#lx .. %#lx (%s)", aMin, aMax, di->text_avma, di->text_avma + di->text_size -1, name ); } return; } /* If the type's size is zero (which can mean unknown size), ignore it. We will never be able to actually relate a data address to a data object with zero size, so there's no point in storing info on it. On 32-bit platforms, also reject types whose size is 2^32 bytes or large. (It's amazing what junk shows up ..) */ mul = ML_(sizeOfType)(di->admin_tyents, typeR); badness = NULL; if (mul.b != True) badness = "unknown size"; else if (mul.ul == 0) badness = "zero size "; else if (sizeof(void*) == 4 && mul.ul >= (1ULL<<32)) badness = "implausibly large"; if (badness) { static Int complaints = 10; if (VG_(clo_verbosity) >= 2 && complaints > 0) { VG_(message)(Vg_DebugMsg, "warning: addVar: %s (%s)", badness, name ); complaints--; } return; } if (!di->varinfo) { di->varinfo = VG_(newXA)( ML_(dinfo_zalloc), "di.storage.addVar.1", ML_(dinfo_free), sizeof(OSet*) ); } vg_assert(level < 256); /* arbitrary; stay sane */ /* Expand the top level array enough to map this level */ while ( VG_(sizeXA)(di->varinfo) <= level ) { DiAddrRange* nyu; scope = VG_(OSetGen_Create)( offsetof(DiAddrRange,aMin), ML_(cmp_for_DiAddrRange_range), ML_(dinfo_zalloc), "di.storage.addVar.2", ML_(dinfo_free) ); vg_assert(scope); if (0) VG_(printf)("create: scope = %p, adding at %ld\n", scope, VG_(sizeXA)(di->varinfo)); VG_(addToXA)( di->varinfo, &scope ); /* Add a single range covering the entire address space. At level 0 we require this doesn't get split. At levels above 0 we require that any additions to it cause it to get split. All of these invariants get checked both add_var_to_arange and after reading is complete, in canonicaliseVarInfo. */ nyu = VG_(OSetGen_AllocNode)( scope, sizeof(DiAddrRange) ); vg_assert(nyu); nyu->aMin = (Addr)0; nyu->aMax = ~(Addr)0; nyu->vars = VG_(newXA)( ML_(dinfo_zalloc), "di.storage.addVar.3", ML_(dinfo_free), sizeof(DiVariable) ); vg_assert(nyu->vars); VG_(OSetGen_Insert)( scope, nyu ); } vg_assert( VG_(sizeXA)(di->varinfo) > level ); scope = *(OSet**)VG_(indexXA)( di->varinfo, level ); vg_assert(scope); var.name = name; var.typeR = typeR; var.gexpr = gexpr; var.fbGX = fbGX; var.fileName = fileName; var.lineNo = lineNo; all = aMin == (Addr)0 && aMax == ~(Addr)0; vg_assert(level == 0 ? all : !all); add_var_to_arange( /*MOD*/scope, aMin, aMax, &var ); } /* This really just checks the constructed data structure, as there is no canonicalisation to do. */ static void canonicaliseVarInfo ( struct _DebugInfo* di ) { Word i, nInThisScope; if (!di->varinfo) return; for (i = 0; i < VG_(sizeXA)(di->varinfo); i++) { DiAddrRange *range, *rangep; OSet* scope = *(OSet**)VG_(indexXA)(di->varinfo, i); if (!scope) continue; /* Deal with the global-scope case. */ if (i == 0) { Addr zero = 0; vg_assert(VG_(OSetGen_Size)( scope ) == 1); range = VG_(OSetGen_Lookup)( scope, &zero ); vg_assert(range); vg_assert(range->aMin == (Addr)0); vg_assert(range->aMax == ~(Addr)0); continue; } /* All the rest of this is for the local-scope case. */ /* iterate over all entries in 'scope' */ nInThisScope = 0; range = rangep = NULL; VG_(OSetGen_ResetIter)(scope); while (True) { range = VG_(OSetGen_Next)(scope); if (!range) { /* We just saw the last one. There must have been at least one entry in the range. */ vg_assert(rangep); vg_assert(rangep->aMax == ~(Addr)0); break; } vg_assert(range->aMin <= range->aMax); vg_assert(range->vars); if (!rangep) { /* This is the first entry in the range. */ vg_assert(range->aMin == 0); } else { vg_assert(rangep->aMax + 1 == range->aMin); } rangep = range; nInThisScope++; } /* iterating over ranges in a given scope */ /* If there's only one entry in this (local) scope, it must cover the entire address space (obviously), but it must not contain any vars. */ vg_assert(nInThisScope > 0); if (nInThisScope == 1) { Addr zero = 0; vg_assert(VG_(OSetGen_Size)( scope ) == 1); range = VG_(OSetGen_Lookup)( scope, &zero ); vg_assert(range); vg_assert(range->aMin == (Addr)0); vg_assert(range->aMax == ~(Addr)0); vg_assert(range->vars); vg_assert(VG_(sizeXA)(range->vars) == 0); } } /* iterate over scopes */ } /*------------------------------------------------------------*/ /*--- Canonicalisers ---*/ /*------------------------------------------------------------*/ /* Sort the symtab by starting address, and emit warnings if any symbols have overlapping address ranges. We use that old chestnut, shellsort. Mash the table around so as to establish the property that addresses are in order and the ranges to not overlap. This facilitates using binary search to map addresses to symbols when we come to query the table. */ static Int compare_DiSym ( void* va, void* vb ) { DiSym* a = (DiSym*)va; DiSym* b = (DiSym*)vb; if (a->addr < b->addr) return -1; if (a->addr > b->addr) return 1; return 0; } /* Two symbols have the same address. Which name do we prefer? The general rule is to prefer the shorter symbol name. If the symbol contains a '@', which means it is versioned, then the length up to the '@' is used for length comparison purposes (so "foo@GLIBC_2.4.2" is considered shorter than "foobar"), but if two symbols have the same length, the one with the version string is preferred. If all else fails, use alphabetical ordering. Very occasionally this goes wrong (eg. 'memcmp' and 'bcmp' are aliases in glibc, we choose the 'bcmp' symbol because it's shorter, so we can misdescribe memcmp() as bcmp()). This is hard to avoid. It's mentioned in the FAQ file. */ static DiSym* prefersym ( struct _DebugInfo* di, DiSym* a, DiSym* b ) { Word cmp; Word lena, lenb; /* full length */ Word vlena, vlenb; /* length without version */ const UChar *vpa, *vpb; Bool preferA = False; Bool preferB = False; vg_assert(a->addr == b->addr); vlena = lena = VG_(strlen)(a->name); vlenb = lenb = VG_(strlen)(b->name); vpa = VG_(strchr)(a->name, '@'); vpb = VG_(strchr)(b->name, '@'); if (vpa) vlena = vpa - a->name; if (vpb) vlenb = vpb - b->name; /* MPI hack: prefer PMPI_Foo over MPI_Foo */ if (0==VG_(strncmp)(a->name, "MPI_", 4) && 0==VG_(strncmp)(b->name, "PMPI_", 5) && 0==VG_(strcmp)(a->name, 1+b->name)) { preferB = True; goto out; } if (0==VG_(strncmp)(b->name, "MPI_", 4) && 0==VG_(strncmp)(a->name, "PMPI_", 5) && 0==VG_(strcmp)(b->name, 1+a->name)) { preferA = True; goto out; } /* Select the shortest unversioned name */ if (vlena < vlenb) { preferA = True; goto out; } if (vlenb < vlena) { preferB = True; goto out; } /* Equal lengths; select the versioned name */ if (vpa && !vpb) { preferA = True; goto out; } if (vpb && !vpa) { preferB = True; goto out; } /* Either both versioned or neither is versioned; select them alphabetically */ cmp = VG_(strcmp)(a->name, b->name); if (cmp < 0) { preferA = True; goto out; } if (cmp > 0) { preferB = True; goto out; } /* If we get here, they are the same (?!). That's very odd. In this case we could choose either (arbitrarily), but might as well choose the one with the lowest DiSym* address, so as to try and make the comparison mechanism more stable (a la sorting parlance). Also, skip the diagnostic printing in this case. */ return a <= b ? a : b; /*NOTREACHED*/ vg_assert(0); out: if (preferA && !preferB) { TRACE_SYMTAB("sym at %#lx: prefer '%s' to '%s'\n", a->addr, a->name, b->name ); return a; } if (preferB && !preferA) { TRACE_SYMTAB("sym at %#lx: prefer '%s' to '%s'\n", b->addr, b->name, a->name ); return b; } /*NOTREACHED*/ vg_assert(0); } static void canonicaliseSymtab ( struct _DebugInfo* di ) { Word i, j, n_merged, n_truncated; Addr s1, s2, e1, e2; # define SWAP(ty,aa,bb) \ do { ty tt = (aa); (aa) = (bb); (bb) = tt; } while (0) if (di->symtab_used == 0) return; VG_(ssort)(di->symtab, di->symtab_used, sizeof(*di->symtab), compare_DiSym); cleanup_more: /* If two symbols have identical address ranges, we pick one using prefersym() (see it for details). */ do { n_merged = 0; j = di->symtab_used; di->symtab_used = 0; for (i = 0; i < j; i++) { if (i < j-1 && di->symtab[i].addr == di->symtab[i+1].addr && di->symtab[i].size == di->symtab[i+1].size) { n_merged++; /* merge the two into one */ di->symtab[di->symtab_used++] = *prefersym(di, &di->symtab[i], &di->symtab[i+1]); i++; } else { di->symtab[di->symtab_used++] = di->symtab[i]; } } TRACE_SYMTAB( "canonicaliseSymtab: %ld symbols merged\n", n_merged); } while (n_merged > 0); /* Detect and "fix" overlapping address ranges. */ n_truncated = 0; for (i = 0; i < ((Word)di->symtab_used) -1; i++) { vg_assert(di->symtab[i].addr <= di->symtab[i+1].addr); /* Check for common (no overlap) case. */ if (di->symtab[i].addr + di->symtab[i].size <= di->symtab[i+1].addr) continue; /* There's an overlap. Truncate one or the other. */ if (di->trace_symtab) { VG_(printf)("overlapping address ranges in symbol table\n\t"); ML_(ppSym)( i, &di->symtab[i] ); VG_(printf)("\t"); ML_(ppSym)( i+1, &di->symtab[i+1] ); VG_(printf)("\n"); } /* Truncate one or the other. */ s1 = di->symtab[i].addr; s2 = di->symtab[i+1].addr; e1 = s1 + di->symtab[i].size - 1; e2 = s2 + di->symtab[i+1].size - 1; if (s1 < s2) { e1 = s2-1; } else { vg_assert(s1 == s2); if (e1 > e2) { s1 = e2+1; SWAP(Addr,s1,s2); SWAP(Addr,e1,e2); } else if (e1 < e2) { s2 = e1+1; } else { /* e1 == e2. Identical addr ranges. We'll eventually wind up back at cleanup_more, which will take care of it. */ } } di->symtab[i].addr = s1; di->symtab[i+1].addr = s2; di->symtab[i].size = e1 - s1 + 1; di->symtab[i+1].size = e2 - s2 + 1; vg_assert(s1 <= s2); vg_assert(di->symtab[i].size > 0); vg_assert(di->symtab[i+1].size > 0); /* It may be that the i+1 entry now needs to be moved further along to maintain the address order requirement. */ j = i+1; while (j < ((Word)di->symtab_used)-1 && di->symtab[j].addr > di->symtab[j+1].addr) { SWAP(DiSym,di->symtab[j],di->symtab[j+1]); j++; } n_truncated++; } if (n_truncated > 0) goto cleanup_more; /* Ensure relevant postconditions hold. */ for (i = 0; i < ((Word)di->symtab_used)-1; i++) { /* No zero-sized symbols. */ vg_assert(di->symtab[i].size > 0); /* In order. */ vg_assert(di->symtab[i].addr < di->symtab[i+1].addr); /* No overlaps. */ vg_assert(di->symtab[i].addr + di->symtab[i].size - 1 < di->symtab[i+1].addr); } # undef SWAP } /* Sort the location table by starting address. Mash the table around so as to establish the property that addresses are in order and the ranges do not overlap. This facilitates using binary search to map addresses to locations when we come to query the table. */ static Int compare_DiLoc ( void* va, void* vb ) { DiLoc* a = (DiLoc*)va; DiLoc* b = (DiLoc*)vb; if (a->addr < b->addr) return -1; if (a->addr > b->addr) return 1; return 0; } static void canonicaliseLoctab ( struct _DebugInfo* di ) { Word i, j; # define SWAP(ty,aa,bb) \ do { ty tt = (aa); (aa) = (bb); (bb) = tt; } while (0); if (di->loctab_used == 0) return; /* Sort by start address. */ VG_(ssort)(di->loctab, di->loctab_used, sizeof(*di->loctab), compare_DiLoc); /* If two adjacent entries overlap, truncate the first. */ for (i = 0; i < ((Word)di->loctab_used)-1; i++) { vg_assert(di->loctab[i].size < 10000); if (di->loctab[i].addr + di->loctab[i].size > di->loctab[i+1].addr) { /* Do this in signed int32 because the actual .size fields are only 12 bits. */ Int new_size = di->loctab[i+1].addr - di->loctab[i].addr; if (new_size < 0) { di->loctab[i].size = 0; } else if (new_size > MAX_LOC_SIZE) { di->loctab[i].size = MAX_LOC_SIZE; } else { di->loctab[i].size = (UShort)new_size; } } } /* Zap any zero-sized entries resulting from the truncation process. */ j = 0; for (i = 0; i < (Word)di->loctab_used; i++) { if (di->loctab[i].size > 0) { if (j != i) di->loctab[j] = di->loctab[i]; j++; } } di->loctab_used = j; /* Ensure relevant postconditions hold. */ for (i = 0; i < ((Word)di->loctab_used)-1; i++) { /* VG_(printf)("%d (%d) %d 0x%x\n", i, di->loctab[i+1].confident, di->loctab[i+1].size, di->loctab[i+1].addr ); */ /* No zero-sized symbols. */ vg_assert(di->loctab[i].size > 0); /* In order. */ vg_assert(di->loctab[i].addr < di->loctab[i+1].addr); /* No overlaps. */ vg_assert(di->loctab[i].addr + di->loctab[i].size - 1 < di->loctab[i+1].addr); } # undef SWAP } /* Sort the call-frame-info table by starting address. Mash the table around so as to establish the property that addresses are in order and the ranges do not overlap. This facilitates using binary search to map addresses to locations when we come to query the table. Also, set cfisi_minaddr and cfisi_maxaddr to be the min and max of any of the address ranges contained in cfisi[0 .. cfisi_used-1], so as to facilitate rapidly skipping this SegInfo when looking for an address which falls outside that range. */ static Int compare_DiCfSI ( void* va, void* vb ) { DiCfSI* a = (DiCfSI*)va; DiCfSI* b = (DiCfSI*)vb; if (a->base < b->base) return -1; if (a->base > b->base) return 1; return 0; } static void canonicaliseCFI ( struct _DebugInfo* di ) { Word i, j; const Addr minAvma = 0; const Addr maxAvma = ~minAvma; /* Note: take care in here. di->cfsi can be NULL, in which case _used and _size fields will be zero. */ if (di->cfsi == NULL) { vg_assert(di->cfsi_used == 0); vg_assert(di->cfsi_size == 0); } /* Set cfsi_minavma and cfsi_maxavma to summarise the entire address range contained in cfsi[0 .. cfsi_used-1]. */ di->cfsi_minavma = maxAvma; di->cfsi_maxavma = minAvma; for (i = 0; i < (Word)di->cfsi_used; i++) { Addr here_min = di->cfsi[i].base; Addr here_max = di->cfsi[i].base + di->cfsi[i].len - 1; if (here_min < di->cfsi_minavma) di->cfsi_minavma = here_min; if (here_max > di->cfsi_maxavma) di->cfsi_maxavma = here_max; } if (di->trace_cfi) VG_(printf)("canonicaliseCfiSI: %ld entries, %#lx .. %#lx\n", di->cfsi_used, di->cfsi_minavma, di->cfsi_maxavma); /* Sort the cfsi array by base address. */ VG_(ssort)(di->cfsi, di->cfsi_used, sizeof(*di->cfsi), compare_DiCfSI); /* If two adjacent entries overlap, truncate the first. */ for (i = 0; i < (Word)di->cfsi_used-1; i++) { if (di->cfsi[i].base + di->cfsi[i].len > di->cfsi[i+1].base) { Word new_len = di->cfsi[i+1].base - di->cfsi[i].base; /* how could it be otherwise? The entries are sorted by the .base field. */ vg_assert(new_len >= 0); vg_assert(new_len <= di->cfsi[i].len); di->cfsi[i].len = new_len; } } /* Zap any zero-sized entries resulting from the truncation process. */ j = 0; for (i = 0; i < (Word)di->cfsi_used; i++) { if (di->cfsi[i].len > 0) { if (j != i) di->cfsi[j] = di->cfsi[i]; j++; } } /* VG_(printf)("XXXXXXXXXXXXX %d %d\n", di->cfsi_used, j); */ di->cfsi_used = j; /* Ensure relevant postconditions hold. */ for (i = 0; i < (Word)di->cfsi_used; i++) { /* No zero-length ranges. */ vg_assert(di->cfsi[i].len > 0); /* Makes sense w.r.t. summary address range */ vg_assert(di->cfsi[i].base >= di->cfsi_minavma); vg_assert(di->cfsi[i].base + di->cfsi[i].len - 1 <= di->cfsi_maxavma); if (i < di->cfsi_used - 1) { /* if (!(di->cfsi[i].base < di->cfsi[i+1].base)) { VG_(printf)("\nOOO cfsis:\n"); ML_(ppCfiSI)(&di->cfsi[i]); ML_(ppCfiSI)(&di->cfsi[i+1]); } */ /* In order. */ vg_assert(di->cfsi[i].base < di->cfsi[i+1].base); /* No overlaps. */ vg_assert(di->cfsi[i].base + di->cfsi[i].len - 1 < di->cfsi[i+1].base); } } } /* Canonicalise the tables held by 'di', in preparation for use. Call this after finishing adding entries to these tables. */ void ML_(canonicaliseTables) ( struct _DebugInfo* di ) { canonicaliseSymtab ( di ); canonicaliseLoctab ( di ); canonicaliseCFI ( di ); canonicaliseVarInfo ( di ); } /*------------------------------------------------------------*/ /*--- Searching the tables ---*/ /*------------------------------------------------------------*/ /* Find a symbol-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_symtab) ( struct _DebugInfo* di, Addr ptr, Bool match_anywhere_in_sym, Bool findText ) { Addr a_mid_lo, a_mid_hi; Word mid, size, lo = 0, hi = di->symtab_used-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->symtab[mid].addr; size = ( match_anywhere_in_sym ? di->symtab[mid].size : 1); a_mid_hi = ((Addr)di->symtab[mid].addr) + size - 1; if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr > a_mid_hi) { lo = mid+1; continue; } vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi); /* Found a symbol with the correct address range. But is it of the right kind (text vs data) ? */ if ( findText && di->symtab[mid].isText ) return mid; if ( (!findText) && (!di->symtab[mid].isText) ) return mid; return -1; } } /* Find a location-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_loctab) ( struct _DebugInfo* di, Addr ptr ) { Addr a_mid_lo, a_mid_hi; Word mid, lo = 0, hi = di->loctab_used-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->loctab[mid].addr; a_mid_hi = ((Addr)di->loctab[mid].addr) + di->loctab[mid].size - 1; if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr > a_mid_hi) { lo = mid+1; continue; } vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi); return mid; } } /* Find a CFI-table index containing the specified pointer, or -1 if not found. Binary search. */ Word ML_(search_one_cfitab) ( struct _DebugInfo* di, Addr ptr ) { Addr a_mid_lo, a_mid_hi; Word mid, size, lo = 0, hi = di->cfsi_used-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return -1; /* not found */ mid = (lo + hi) / 2; a_mid_lo = di->cfsi[mid].base; size = di->cfsi[mid].len; a_mid_hi = a_mid_lo + size - 1; vg_assert(a_mid_hi >= a_mid_lo); if (ptr < a_mid_lo) { hi = mid-1; continue; } if (ptr > a_mid_hi) { lo = mid+1; continue; } vg_assert(ptr >= a_mid_lo && ptr <= a_mid_hi); return mid; } } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/