/*--------------------------------------------------------------------*/ /*--- Platform-specific syscalls stuff. syswrap-x86-linux.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2005 Nicholas Nethercote njn@valgrind.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ /* TODO/FIXME jrs 20050207: assignments to the syscall return result in interrupted_syscall() need to be reviewed. They don't seem to assign the shadow state. */ #include "pub_core_basics.h" #include "pub_core_threadstate.h" #include "pub_core_debuginfo.h" // VG_(di_notify_mmap) #include "pub_core_aspacemgr.h" #include "pub_core_debuglog.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_libcproc.h" #include "pub_core_libcsignal.h" #include "pub_core_mallocfree.h" #include "pub_core_options.h" #include "pub_core_scheduler.h" #include "pub_core_sigframe.h" // For VG_(sigframe_destroy)() #include "pub_core_signals.h" #include "pub_core_syscall.h" #include "pub_core_syswrap.h" #include "pub_core_tooliface.h" #include "priv_types_n_macros.h" #include "priv_syswrap-generic.h" /* for decls of generic wrappers */ #include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */ #include "priv_syswrap-main.h" #include "vki_unistd.h" /* for the __NR_* constants */ /* --------------------------------------------------------------------- Stacks, thread wrappers Note. Why is this stuff here? ------------------------------------------------------------------ */ /* Allocate a stack for this thread. They're allocated lazily, and never freed. */ /* Allocate a stack for this thread, if it doesn't already have one. Returns the initial stack pointer value to use, or 0 if allocation failed. */ static Addr allocstack ( ThreadId tid ) { ThreadState* tst = VG_(get_ThreadState)(tid); VgStack* stack; Addr initial_SP; /* Either the stack_base and stack_init_SP are both zero (in which case a stack hasn't been allocated) or they are both non-zero, in which case it has. */ if (tst->os_state.valgrind_stack_base == 0) vg_assert(tst->os_state.valgrind_stack_init_SP == 0); if (tst->os_state.valgrind_stack_base != 0) vg_assert(tst->os_state.valgrind_stack_init_SP != 0); /* If no stack is present, allocate one. */ if (tst->os_state.valgrind_stack_base == 0) { stack = VG_(am_alloc_VgStack)( &initial_SP ); if (stack) { tst->os_state.valgrind_stack_base = (Addr)stack; tst->os_state.valgrind_stack_init_SP = initial_SP; } } if (0) VG_(printf)( "stack for tid %d at %p; init_SP=%p\n", tid, (void*)tst->os_state.valgrind_stack_base, (void*)tst->os_state.valgrind_stack_init_SP ); return tst->os_state.valgrind_stack_init_SP; } /* Run a thread all the way to the end, then do appropriate exit actions (this is the last-one-out-turn-off-the-lights bit). */ static void run_a_thread_NORETURN ( Word tidW ) { ThreadId tid = (ThreadId)tidW; VG_(debugLog)(1, "syswrap-x86-linux", "run_a_thread_NORETURN(tid=%lld): " "ML_(thread_wrapper) called\n", (ULong)tidW); /* Run the thread all the way through. */ VgSchedReturnCode src = ML_(thread_wrapper)(tid); VG_(debugLog)(1, "syswrap-x86-linux", "run_a_thread_NORETURN(tid=%lld): " "ML_(thread_wrapper) done\n", (ULong)tidW); Int c = VG_(count_living_threads)(); vg_assert(c >= 1); /* stay sane */ if (c == 1) { VG_(debugLog)(1, "syswrap-x86-linux", "run_a_thread_NORETURN(tid=%lld): " "last one standing\n", (ULong)tidW); /* We are the last one standing. Keep hold of the lock and carry on to show final tool results, then exit the entire system. Use the continuation pointer set at startup in m_main. */ ( * VG_(address_of_m_main_shutdown_actions_NORETURN) ) (tid, src); } else { VG_(debugLog)(1, "syswrap-x86-linux", "run_a_thread_NORETURN(tid=%lld): " "not last one standing\n", (ULong)tidW); /* OK, thread is dead, but others still exist. Just exit. */ ThreadState *tst = VG_(get_ThreadState)(tid); /* This releases the run lock */ VG_(exit_thread)(tid); vg_assert(tst->status == VgTs_Zombie); /* We have to use this sequence to terminate the thread to prevent a subtle race. If VG_(exit_thread)() had left the ThreadState as Empty, then it could have been reallocated, reusing the stack while we're doing these last cleanups. Instead, VG_(exit_thread) leaves it as Zombie to prevent reallocation. We need to make sure we don't touch the stack between marking it Empty and exiting. Hence the assembler. */ asm volatile ( "movl %1, %0\n" /* set tst->status = VgTs_Empty */ "movl %2, %%eax\n" /* set %eax = __NR_exit */ "movl %3, %%ebx\n" /* set %ebx = tst->os_state.exitcode */ "int $0x80\n" /* exit(tst->os_state.exitcode) */ : "=m" (tst->status) : "n" (VgTs_Empty), "n" (__NR_exit), "m" (tst->os_state.exitcode)); VG_(core_panic)("Thread exit failed?\n"); } /*NOTREACHED*/ vg_assert(0); } /* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and use 'retaddr' as f's return-to address. Also, clear all the integer registers before entering f.*/ __attribute__((noreturn)) void call_on_new_stack_0_1 ( Addr stack, Addr retaddr, void (*f)(Word), Word arg1 ); // 4(%esp) == stack // 8(%esp) == retaddr // 12(%esp) == f // 16(%esp) == arg1 asm( "call_on_new_stack_0_1:\n" " movl %esp, %esi\n" // remember old stack pointer " movl 4(%esi), %esp\n" // set stack " pushl 16(%esi)\n" // arg1 to stack " pushl 8(%esi)\n" // retaddr to stack " pushl 12(%esi)\n" // f to stack " movl $0, %eax\n" // zero all GP regs " movl $0, %ebx\n" " movl $0, %ecx\n" " movl $0, %edx\n" " movl $0, %esi\n" " movl $0, %edi\n" " movl $0, %ebp\n" " ret\n" // jump to f " ud2\n" // should never get here ); /* Allocate a stack for the main thread, and run it all the way to the end. Although we already have a working VgStack (VG_(interim_stack)) it's better to allocate a new one, so that overflow detection works uniformly for all threads. */ void VG_(main_thread_wrapper_NORETURN)(ThreadId tid) { VG_(debugLog)(1, "syswrap-x86-linux", "entering VG_(main_thread_wrapper_NORETURN)\n"); Addr esp = allocstack(tid); /* If we can't even allocate the first thread's stack, we're hosed. Give up. */ vg_assert2(esp != 0, "Cannot allocate main thread's stack."); /* shouldn't be any other threads around yet */ vg_assert( VG_(count_living_threads)() == 1 ); call_on_new_stack_0_1( esp, /* stack */ 0, /*bogus return address*/ run_a_thread_NORETURN, /* fn to call */ (Word)tid /* arg to give it */ ); /*NOTREACHED*/ vg_assert(0); } static Int start_thread_NORETURN ( void* arg ) { ThreadState* tst = (ThreadState*)arg; ThreadId tid = tst->tid; run_a_thread_NORETURN ( (Word)tid ); /*NOTREACHED*/ vg_assert(0); } /* --------------------------------------------------------------------- clone() handling ------------------------------------------------------------------ */ /* Perform a clone system call. clone is strange because it has fork()-like return-twice semantics, so it needs special handling here. Upon entry, we have: int (fn)(void*) in 0+FSZ(%esp) void* child_stack in 4+FSZ(%esp) int flags in 8+FSZ(%esp) void* arg in 12+FSZ(%esp) pid_t* child_tid in 16+FSZ(%esp) pid_t* parent_tid in 20+FSZ(%esp) void* tls_ptr in 24+FSZ(%esp) System call requires: int $__NR_clone in %eax int flags in %ebx void* child_stack in %ecx pid_t* parent_tid in %edx pid_t* child_tid in %edi void* tls_ptr in %esi Returns an Int encoded in the linux-x86 way, not a SysRes. */ #define STRINGIFZ(__str) #__str #define STRINGIFY(__str) STRINGIFZ(__str) #define FSZ "4+4+4+4" /* frame size = retaddr+ebx+edi+esi */ #define __NR_CLONE STRINGIFY(__NR_clone) #define __NR_EXIT STRINGIFY(__NR_exit) extern Int do_syscall_clone_x86_linux ( Int (*fn)(void *), void* stack, Int flags, void* arg, Int* child_tid, Int* parent_tid, vki_modify_ldt_t * ); asm( "\n" "do_syscall_clone_x86_linux:\n" " push %ebx\n" " push %edi\n" " push %esi\n" /* set up child stack with function and arg */ " movl 4+"FSZ"(%esp), %ecx\n" /* syscall arg2: child stack */ " movl 12+"FSZ"(%esp), %ebx\n" /* fn arg */ " movl 0+"FSZ"(%esp), %eax\n" /* fn */ " lea -8(%ecx), %ecx\n" /* make space on stack */ " movl %ebx, 4(%ecx)\n" /* fn arg */ " movl %eax, 0(%ecx)\n" /* fn */ /* get other args to clone */ " movl 8+"FSZ"(%esp), %ebx\n" /* syscall arg1: flags */ " movl 20+"FSZ"(%esp), %edx\n" /* syscall arg3: parent tid * */ " movl 16+"FSZ"(%esp), %edi\n" /* syscall arg5: child tid * */ " movl 24+"FSZ"(%esp), %esi\n" /* syscall arg4: tls_ptr * */ " movl $"__NR_CLONE", %eax\n" " int $0x80\n" /* clone() */ " testl %eax, %eax\n" /* child if retval == 0 */ " jnz 1f\n" /* CHILD - call thread function */ " popl %eax\n" " call *%eax\n" /* call fn */ /* exit with result */ " movl %eax, %ebx\n" /* arg1: return value from fn */ " movl $"__NR_EXIT", %eax\n" " int $0x80\n" /* Hm, exit returned */ " ud2\n" "1:\n" /* PARENT or ERROR */ " pop %esi\n" " pop %edi\n" " pop %ebx\n" " ret\n" ); #undef FSZ #undef __NR_CLONE #undef __NR_EXIT #undef STRINGIFY #undef STRINGIFZ // forward declarations static void setup_child ( ThreadArchState*, ThreadArchState*, Bool ); static SysRes sys_set_thread_area ( ThreadId, vki_modify_ldt_t* ); /* When a client clones, we need to keep track of the new thread. This means: 1. allocate a ThreadId+ThreadState+stack for the the thread 2. initialize the thread's new VCPU state 3. create the thread using the same args as the client requested, but using the scheduler entrypoint for EIP, and a separate stack for ESP. */ static SysRes do_clone ( ThreadId ptid, UInt flags, Addr esp, Int* parent_tidptr, Int* child_tidptr, vki_modify_ldt_t *tlsinfo) { static const Bool debug = False; ThreadId ctid = VG_(alloc_ThreadState)(); ThreadState* ptst = VG_(get_ThreadState)(ptid); ThreadState* ctst = VG_(get_ThreadState)(ctid); UWord* stack; NSegment* seg; SysRes res; Int eax; vki_sigset_t blockall, savedmask; VG_(sigfillset)(&blockall); vg_assert(VG_(is_running_thread)(ptid)); vg_assert(VG_(is_valid_tid)(ctid)); stack = (UWord*)allocstack(ctid); if (stack == NULL) { res = VG_(mk_SysRes_Error)( VKI_ENOMEM ); goto out; } /* Copy register state Both parent and child return to the same place, and the code following the clone syscall works out which is which, so we don't need to worry about it. The parent gets the child's new tid returned from clone, but the child gets 0. If the clone call specifies a NULL esp for the new thread, then it actually gets a copy of the parent's esp. */ /* Note: the clone call done by the Quadrics Elan3 driver specifies clone flags of 0xF00, and it seems to rely on the assumption that the child inherits a copy of the parent's GDT. setup_child takes care of setting that up. */ setup_child( &ctst->arch, &ptst->arch, True ); /* Make sys_clone appear to have returned Success(0) in the child. */ ctst->arch.vex.guest_EAX = 0; if (esp != 0) ctst->arch.vex.guest_ESP = esp; ctst->os_state.parent = ptid; /* inherit signal mask */ ctst->sig_mask = ptst->sig_mask; ctst->tmp_sig_mask = ptst->sig_mask; /* We don't really know where the client stack is, because its allocated by the client. The best we can do is look at the memory mappings and try to derive some useful information. We assume that esp starts near its highest possible value, and can only go down to the start of the mmaped segment. */ seg = VG_(am_find_nsegment)((Addr)esp); if (seg && seg->kind != SkResvn) { ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(esp); ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start; if (debug) VG_(printf)("tid %d: guessed client stack range %p-%p\n", ctid, seg->start, VG_PGROUNDUP(esp)); } else { VG_(message)(Vg_UserMsg, "!? New thread %d starts with ESP(%p) unmapped\n", ctid, esp); ctst->client_stack_szB = 0; } if (flags & VKI_CLONE_SETTLS) { if (debug) VG_(printf)("clone child has SETTLS: tls info at %p: idx=%d " "base=%p limit=%x; esp=%p fs=%x gs=%x\n", tlsinfo, tlsinfo->entry_number, tlsinfo->base_addr, tlsinfo->limit, ptst->arch.vex.guest_ESP, ctst->arch.vex.guest_FS, ctst->arch.vex.guest_GS); res = sys_set_thread_area(ctid, tlsinfo); if (res.isError) goto out; } flags &= ~VKI_CLONE_SETTLS; /* start the thread with everything blocked */ VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask); /* Create the new thread */ eax = do_syscall_clone_x86_linux( start_thread_NORETURN, stack, flags, &VG_(threads)[ctid], child_tidptr, parent_tidptr, NULL ); res = VG_(mk_SysRes_x86_linux)( eax ); VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL); out: if (res.isError) { /* clone failed */ VG_(cleanup_thread)(&ctst->arch); ctst->status = VgTs_Empty; } return res; } /* Do a clone which is really a fork() */ static SysRes do_fork_clone ( ThreadId tid, UInt flags, Addr esp, Int* parent_tidptr, Int* child_tidptr ) { vki_sigset_t fork_saved_mask; vki_sigset_t mask; SysRes res; if (flags & (VKI_CLONE_SETTLS | VKI_CLONE_FS | VKI_CLONE_VM | VKI_CLONE_FILES | VKI_CLONE_VFORK)) return VG_(mk_SysRes_Error)( VKI_EINVAL ); /* Block all signals during fork, so that we can fix things up in the child without being interrupted. */ VG_(sigfillset)(&mask); VG_(sigprocmask)(VKI_SIG_SETMASK, &mask, &fork_saved_mask); /* Since this is the fork() form of clone, we don't need all that VG_(clone) stuff */ res = VG_(do_syscall5)( __NR_clone, flags, (UWord)NULL, (UWord)parent_tidptr, (UWord)NULL, (UWord)child_tidptr ); if (!res.isError && res.val == 0) { /* child */ VG_(do_atfork_child)(tid); /* restore signal mask */ VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL); } else if (!res.isError && res.val > 0) { /* parent */ if (VG_(clo_trace_syscalls)) VG_(printf)(" clone(fork): process %d created child %d\n", VG_(getpid)(), res.val); /* restore signal mask */ VG_(sigprocmask)(VKI_SIG_SETMASK, &fork_saved_mask, NULL); } return res; } /* --------------------------------------------------------------------- LDT/GDT simulation ------------------------------------------------------------------ */ /* Details of the LDT simulation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When a program runs natively, the linux kernel allows each *thread* in it to have its own LDT. Almost all programs never do this -- it's wildly unportable, after all -- and so the kernel never allocates the structure, which is just as well as an LDT occupies 64k of memory (8192 entries of size 8 bytes). A thread may choose to modify its LDT entries, by doing the __NR_modify_ldt syscall. In such a situation the kernel will then allocate an LDT structure for it. Each LDT entry is basically a (base, limit) pair. A virtual address in a specific segment is translated to a linear address by adding the segment's base value. In addition, the virtual address must not exceed the limit value. To use an LDT entry, a thread loads one of the segment registers (%cs, %ss, %ds, %es, %fs, %gs) with the index of the LDT entry (0 .. 8191) it wants to use. In fact, the required value is (index << 3) + 7, but that's not important right now. Any normal instruction which includes an addressing mode can then be made relative to that LDT entry by prefixing the insn with a so-called segment-override prefix, a byte which indicates which of the 6 segment registers holds the LDT index. Now, a key constraint is that valgrind's address checks operate in terms of linear addresses. So we have to explicitly translate virtual addrs into linear addrs, and that means doing a complete LDT simulation. Calls to modify_ldt are intercepted. For each thread, we maintain an LDT (with the same normally-never-allocated optimisation that the kernel does). This is updated as expected via calls to modify_ldt. When a thread does an amode calculation involving a segment override prefix, the relevant LDT entry for the thread is consulted. It all works. There is a conceptual problem, which appears when switching back to native execution, either temporarily to pass syscalls to the kernel, or permanently, when debugging V. Problem at such points is that it's pretty pointless to copy the simulated machine's segment registers to the real machine, because we'd also need to copy the simulated LDT into the real one, and that's prohibitively expensive. Fortunately it looks like no syscalls rely on the segment regs or LDT being correct, so we can get away with it. Apart from that the simulation is pretty straightforward. All 6 segment registers are tracked, although only %ds, %es, %fs and %gs are allowed as prefixes. Perhaps it could be restricted even more than that -- I am not sure what is and isn't allowed in user-mode. */ /* Translate a struct modify_ldt_ldt_s to a VexGuestX86SegDescr, using the Linux kernel's logic (cut-n-paste of code in linux/kernel/ldt.c). */ static void translate_to_hw_format ( /* IN */ vki_modify_ldt_t* inn, /* OUT */ VexGuestX86SegDescr* out, Int oldmode ) { UInt entry_1, entry_2; vg_assert(8 == sizeof(VexGuestX86SegDescr)); if (0) VG_(printf)("translate_to_hw_format: base %p, limit %d\n", inn->base_addr, inn->limit ); /* Allow LDTs to be cleared by the user. */ if (inn->base_addr == 0 && inn->limit == 0) { if (oldmode || (inn->contents == 0 && inn->read_exec_only == 1 && inn->seg_32bit == 0 && inn->limit_in_pages == 0 && inn->seg_not_present == 1 && inn->useable == 0 )) { entry_1 = 0; entry_2 = 0; goto install; } } entry_1 = ((inn->base_addr & 0x0000ffff) << 16) | (inn->limit & 0x0ffff); entry_2 = (inn->base_addr & 0xff000000) | ((inn->base_addr & 0x00ff0000) >> 16) | (inn->limit & 0xf0000) | ((inn->read_exec_only ^ 1) << 9) | (inn->contents << 10) | ((inn->seg_not_present ^ 1) << 15) | (inn->seg_32bit << 22) | (inn->limit_in_pages << 23) | 0x7000; if (!oldmode) entry_2 |= (inn->useable << 20); /* Install the new entry ... */ install: out->LdtEnt.Words.word1 = entry_1; out->LdtEnt.Words.word2 = entry_2; } /* Create a zeroed-out GDT. */ static VexGuestX86SegDescr* alloc_zeroed_x86_GDT ( void ) { Int nbytes = VEX_GUEST_X86_GDT_NENT * sizeof(VexGuestX86SegDescr); return VG_(arena_calloc)(VG_AR_CORE, nbytes, 1); } /* Create a zeroed-out LDT. */ static VexGuestX86SegDescr* alloc_zeroed_x86_LDT ( void ) { Int nbytes = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr); return VG_(arena_calloc)(VG_AR_CORE, nbytes, 1); } /* Free up an LDT or GDT allocated by the above fns. */ static void free_LDT_or_GDT ( VexGuestX86SegDescr* dt ) { vg_assert(dt); VG_(arena_free)(VG_AR_CORE, (void*)dt); } /* Copy contents between two existing LDTs. */ static void copy_LDT_from_to ( VexGuestX86SegDescr* src, VexGuestX86SegDescr* dst ) { Int i; vg_assert(src); vg_assert(dst); for (i = 0; i < VEX_GUEST_X86_LDT_NENT; i++) dst[i] = src[i]; } /* Copy contents between two existing GDTs. */ static void copy_GDT_from_to ( VexGuestX86SegDescr* src, VexGuestX86SegDescr* dst ) { Int i; vg_assert(src); vg_assert(dst); for (i = 0; i < VEX_GUEST_X86_GDT_NENT; i++) dst[i] = src[i]; } /* Free this thread's DTs, if it has any. */ static void deallocate_LGDTs_for_thread ( VexGuestX86State* vex ) { vg_assert(sizeof(HWord) == sizeof(void*)); if (0) VG_(printf)("deallocate_LGDTs_for_thread: " "ldt = 0x%x, gdt = 0x%x\n", vex->guest_LDT, vex->guest_GDT ); if (vex->guest_LDT != (HWord)NULL) { free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_LDT ); vex->guest_LDT = (HWord)NULL; } if (vex->guest_GDT != (HWord)NULL) { free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_GDT ); vex->guest_GDT = (HWord)NULL; } } /* * linux/kernel/ldt.c * * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds * Copyright (C) 1999 Ingo Molnar */ /* * read_ldt() is not really atomic - this is not a problem since * synchronization of reads and writes done to the LDT has to be * assured by user-space anyway. Writes are atomic, to protect * the security checks done on new descriptors. */ static SysRes read_ldt ( ThreadId tid, UChar* ptr, UInt bytecount ) { SysRes res; UInt i, size; UChar* ldt; if (0) VG_(printf)("read_ldt: tid = %d, ptr = %p, bytecount = %d\n", tid, ptr, bytecount ); vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*)); vg_assert(8 == sizeof(VexGuestX86SegDescr)); ldt = (Char*)(VG_(threads)[tid].arch.vex.guest_LDT); res = VG_(mk_SysRes_Success)( 0 ); if (ldt == NULL) /* LDT not allocated, meaning all entries are null */ goto out; size = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr); if (size > bytecount) size = bytecount; res = VG_(mk_SysRes_Success)( size ); for (i = 0; i < size; i++) ptr[i] = ldt[i]; out: return res; } static SysRes write_ldt ( ThreadId tid, void* ptr, UInt bytecount, Int oldmode ) { SysRes res; VexGuestX86SegDescr* ldt; vki_modify_ldt_t* ldt_info; if (0) VG_(printf)("write_ldt: tid = %d, ptr = %p, " "bytecount = %d, oldmode = %d\n", tid, ptr, bytecount, oldmode ); vg_assert(8 == sizeof(VexGuestX86SegDescr)); vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*)); ldt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_LDT; ldt_info = (vki_modify_ldt_t*)ptr; res = VG_(mk_SysRes_Error)( VKI_EINVAL ); if (bytecount != sizeof(vki_modify_ldt_t)) goto out; res = VG_(mk_SysRes_Error)( VKI_EINVAL ); if (ldt_info->entry_number >= VEX_GUEST_X86_LDT_NENT) goto out; if (ldt_info->contents == 3) { if (oldmode) goto out; if (ldt_info->seg_not_present == 0) goto out; } /* If this thread doesn't have an LDT, we'd better allocate it now. */ if (ldt == (HWord)NULL) { ldt = alloc_zeroed_x86_LDT(); VG_(threads)[tid].arch.vex.guest_LDT = (HWord)ldt; } /* Install the new entry ... */ translate_to_hw_format ( ldt_info, &ldt[ldt_info->entry_number], oldmode ); res = VG_(mk_SysRes_Success)( 0 ); out: return res; } static SysRes sys_modify_ldt ( ThreadId tid, Int func, void* ptr, UInt bytecount ) { SysRes ret = VG_(mk_SysRes_Error)( VKI_ENOSYS ); switch (func) { case 0: ret = read_ldt(tid, ptr, bytecount); break; case 1: ret = write_ldt(tid, ptr, bytecount, 1); break; case 2: VG_(unimplemented)("sys_modify_ldt: func == 2"); /* god knows what this is about */ /* ret = read_default_ldt(ptr, bytecount); */ /*UNREACHED*/ break; case 0x11: ret = write_ldt(tid, ptr, bytecount, 0); break; } return ret; } static SysRes sys_set_thread_area ( ThreadId tid, vki_modify_ldt_t* info ) { Int idx; VexGuestX86SegDescr* gdt; vg_assert(8 == sizeof(VexGuestX86SegDescr)); vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*)); if (info == NULL) return VG_(mk_SysRes_Error)( VKI_EFAULT ); gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT; /* If the thread doesn't have a GDT, allocate it now. */ if (!gdt) { gdt = alloc_zeroed_x86_GDT(); VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt; } idx = info->entry_number; if (idx == -1) { /* Find and use the first free entry. */ for (idx = 0; idx < VEX_GUEST_X86_GDT_NENT; idx++) { if (gdt[idx].LdtEnt.Words.word1 == 0 && gdt[idx].LdtEnt.Words.word2 == 0) break; } if (idx == VEX_GUEST_X86_GDT_NENT) return VG_(mk_SysRes_Error)( VKI_ESRCH ); } else if (idx < 0 || idx >= VEX_GUEST_X86_GDT_NENT) { return VG_(mk_SysRes_Error)( VKI_EINVAL ); } translate_to_hw_format(info, &gdt[idx], 0); VG_TRACK( pre_mem_write, Vg_CoreSysCall, tid, "set_thread_area(info->entry)", (Addr) & info->entry_number, sizeof(unsigned int) ); info->entry_number = idx; VG_TRACK( post_mem_write, Vg_CoreSysCall, tid, (Addr) & info->entry_number, sizeof(unsigned int) ); return VG_(mk_SysRes_Success)( 0 ); } static SysRes sys_get_thread_area ( ThreadId tid, vki_modify_ldt_t* info ) { Int idx; VexGuestX86SegDescr* gdt; vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*)); vg_assert(8 == sizeof(VexGuestX86SegDescr)); if (info == NULL) return VG_(mk_SysRes_Error)( VKI_EFAULT ); idx = info->entry_number; if (idx < 0 || idx >= VEX_GUEST_X86_GDT_NENT) return VG_(mk_SysRes_Error)( VKI_EINVAL ); gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT; /* If the thread doesn't have a GDT, allocate it now. */ if (!gdt) { gdt = alloc_zeroed_x86_GDT(); VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt; } info->base_addr = ( gdt[idx].LdtEnt.Bits.BaseHi << 24 ) | ( gdt[idx].LdtEnt.Bits.BaseMid << 16 ) | gdt[idx].LdtEnt.Bits.BaseLow; info->limit = ( gdt[idx].LdtEnt.Bits.LimitHi << 16 ) | gdt[idx].LdtEnt.Bits.LimitLow; info->seg_32bit = gdt[idx].LdtEnt.Bits.Default_Big; info->contents = ( gdt[idx].LdtEnt.Bits.Type >> 2 ) & 0x3; info->read_exec_only = ( gdt[idx].LdtEnt.Bits.Type & 0x1 ) ^ 0x1; info->limit_in_pages = gdt[idx].LdtEnt.Bits.Granularity; info->seg_not_present = gdt[idx].LdtEnt.Bits.Pres ^ 0x1; info->useable = gdt[idx].LdtEnt.Bits.Sys; info->reserved = 0; return VG_(mk_SysRes_Success)( 0 ); } /* --------------------------------------------------------------------- More thread stuff ------------------------------------------------------------------ */ void VG_(cleanup_thread) ( ThreadArchState* arch ) { /* Release arch-specific resources held by this thread. */ /* On x86, we have to dump the LDT and GDT. */ deallocate_LGDTs_for_thread( &arch->vex ); } static void setup_child ( /*OUT*/ ThreadArchState *child, /*IN*/ ThreadArchState *parent, Bool inherit_parents_GDT ) { /* We inherit our parent's guest state. */ child->vex = parent->vex; child->vex_shadow = parent->vex_shadow; /* We inherit our parent's LDT. */ if (parent->vex.guest_LDT == (HWord)NULL) { /* We hope this is the common case. */ child->vex.guest_LDT = (HWord)NULL; } else { /* No luck .. we have to take a copy of the parent's. */ child->vex.guest_LDT = (HWord)alloc_zeroed_x86_LDT(); copy_LDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_LDT, (VexGuestX86SegDescr*)child->vex.guest_LDT ); } /* Either we start with an empty GDT (the usual case) or inherit a copy of our parents' one (Quadrics Elan3 driver -style clone only). */ child->vex.guest_GDT = (HWord)NULL; if (inherit_parents_GDT && parent->vex.guest_GDT != (HWord)NULL) { child->vex.guest_GDT = (HWord)alloc_zeroed_x86_GDT(); copy_GDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_GDT, (VexGuestX86SegDescr*)child->vex.guest_GDT ); } } /* --------------------------------------------------------------------- PRE/POST wrappers for x86/Linux-specific syscalls ------------------------------------------------------------------ */ #define PRE(name) DEFN_PRE_TEMPLATE(x86_linux, name) #define POST(name) DEFN_POST_TEMPLATE(x86_linux, name) /* Add prototypes for the wrappers declared here, so that gcc doesn't harass us for not having prototypes. Really this is a kludge -- the right thing to do is to make these wrappers 'static' since they aren't visible outside this file, but that requires even more macro magic. */ DECL_TEMPLATE(x86_linux, sys_socketcall); DECL_TEMPLATE(x86_linux, sys_stat64); DECL_TEMPLATE(x86_linux, sys_fstat64); DECL_TEMPLATE(x86_linux, sys_lstat64); DECL_TEMPLATE(x86_linux, sys_clone); DECL_TEMPLATE(x86_linux, old_mmap); DECL_TEMPLATE(x86_linux, sys_sigreturn); DECL_TEMPLATE(x86_linux, sys_ipc); DECL_TEMPLATE(x86_linux, sys_rt_sigreturn); DECL_TEMPLATE(x86_linux, sys_modify_ldt); DECL_TEMPLATE(x86_linux, sys_set_thread_area); DECL_TEMPLATE(x86_linux, sys_get_thread_area); DECL_TEMPLATE(x86_linux, sys_ptrace); DECL_TEMPLATE(x86_linux, sys_sigaction); DECL_TEMPLATE(x86_linux, old_select); PRE(old_select) { /* struct sel_arg_struct { unsigned long n; fd_set *inp, *outp, *exp; struct timeval *tvp; }; */ PRE_REG_READ1(long, "old_select", struct sel_arg_struct *, args); PRE_MEM_READ( "old_select(args)", ARG1, 5*sizeof(UWord) ); *flags |= SfMayBlock; { UInt* arg_struct = (UInt*)ARG1; UInt a1, a2, a3, a4, a5; a1 = arg_struct[0]; a2 = arg_struct[1]; a3 = arg_struct[2]; a4 = arg_struct[3]; a5 = arg_struct[4]; PRINT("old_select ( %d, %p, %p, %p, %p )", a1,a2,a3,a4,a5); if (a2 != (Addr)NULL) PRE_MEM_READ( "old_select(readfds)", a2, a1/8 /* __FD_SETSIZE/8 */ ); if (a3 != (Addr)NULL) PRE_MEM_READ( "old_select(writefds)", a3, a1/8 /* __FD_SETSIZE/8 */ ); if (a4 != (Addr)NULL) PRE_MEM_READ( "old_select(exceptfds)", a4, a1/8 /* __FD_SETSIZE/8 */ ); if (a5 != (Addr)NULL) PRE_MEM_READ( "old_select(timeout)", a5, sizeof(struct vki_timeval) ); } } PRE(sys_clone) { UInt cloneflags; PRINT("sys_clone ( %x, %p, %p, %p, %p )",ARG1,ARG2,ARG3,ARG4,ARG5); PRE_REG_READ5(int, "clone", unsigned long, flags, void *, child_stack, int *, parent_tidptr, vki_modify_ldt_t *, tlsinfo, int *, child_tidptr); if (ARG1 & VKI_CLONE_PARENT_SETTID) { PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) { PRE_MEM_WRITE("clone(child_tidptr)", ARG5, sizeof(Int)); if (!VG_(am_is_valid_for_client)(ARG5, sizeof(Int), VKI_PROT_WRITE)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } if (ARG1 & VKI_CLONE_SETTLS) { PRE_MEM_READ("clone(tls_user_desc)", ARG4, sizeof(vki_modify_ldt_t)); if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t), VKI_PROT_READ)) { SET_STATUS_Failure( VKI_EFAULT ); return; } } cloneflags = ARG1; if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) { SET_STATUS_Failure( VKI_EINVAL ); return; } /* Be ultra-paranoid and filter out any clone-variants we don't understand: - ??? specifies clone flags of 0x100011 - ??? specifies clone flags of 0x1200011. - NPTL specifies clone flags of 0x7D0F00. - The Quadrics Elan3 driver specifies clone flags of 0xF00. Everything else is rejected. */ if ( (cloneflags == 0x100011 || cloneflags == 0x1200011 || cloneflags == 0x7D0F00 || cloneflags == 0x790F00 || cloneflags == 0x3D0F00 || cloneflags == 0xF00 || cloneflags == 0xF21)) { /* OK */ } else { /* Nah. We don't like it. Go away. */ goto reject; } /* Only look at the flags we really care about */ switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES | VKI_CLONE_VFORK)) { case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES: /* thread creation */ SET_STATUS_from_SysRes( do_clone(tid, ARG1, /* flags */ (Addr)ARG2, /* child ESP */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG5, /* child_tidptr */ (vki_modify_ldt_t *)ARG4)); /* set_tls */ break; case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */ /* FALLTHROUGH - assume vfork == fork */ cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM); case 0: /* plain fork */ SET_STATUS_from_SysRes( do_fork_clone(tid, cloneflags, /* flags */ (Addr)ARG2, /* child ESP */ (Int *)ARG3, /* parent_tidptr */ (Int *)ARG5)); /* child_tidptr */ break; default: reject: /* should we just ENOSYS? */ VG_(message)(Vg_UserMsg, ""); VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%x", ARG1); VG_(message)(Vg_UserMsg, ""); VG_(message)(Vg_UserMsg, "The only supported clone() uses are:"); VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)"); VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork"); VG_(message)(Vg_UserMsg, " - for the Quadrics Elan3 user-space driver"); VG_(unimplemented) ("Valgrind does not support general clone()."); } if (SUCCESS) { if (ARG1 & VKI_CLONE_PARENT_SETTID) POST_MEM_WRITE(ARG3, sizeof(Int)); if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) POST_MEM_WRITE(ARG5, sizeof(Int)); /* Thread creation was successful; let the child have the chance to run */ *flags |= SfYieldAfter; } } PRE(sys_sigreturn) { ThreadState* tst; PRINT("sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Adjust esp to point to start of frame; skip back up over sigreturn sequence's "popl %eax" and handler ret addr */ tst = VG_(get_ThreadState)(tid); tst->arch.vex.guest_ESP -= sizeof(Addr)+sizeof(Word); /* This is only so that the EIP is (might be) useful to report if something goes wrong in the sigreturn */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); VG_(sigframe_destroy)(tid, False); /* For unclear reasons, it appears we need the syscall to return without changing %EAX. Since %EAX is the return value, and can denote either success or failure, we must set up so that the driver logic copies it back unchanged. Also, note %EAX is of the guest registers written by VG_(sigframe_destroy). */ SET_STATUS_from_SysRes( VG_(mk_SysRes_x86_linux)( tst->arch.vex.guest_EAX ) ); /* Check to see if some any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_rt_sigreturn) { ThreadState* tst; PRINT("rt_sigreturn ( )"); vg_assert(VG_(is_valid_tid)(tid)); vg_assert(tid >= 1 && tid < VG_N_THREADS); vg_assert(VG_(is_running_thread)(tid)); /* Adjust esp to point to start of frame; skip back up over handler ret addr */ tst = VG_(get_ThreadState)(tid); tst->arch.vex.guest_ESP -= sizeof(Addr); /* This is only so that the EIP is (might be) useful to report if something goes wrong in the sigreturn */ ML_(fixup_guest_state_to_restart_syscall)(&tst->arch); VG_(sigframe_destroy)(tid, True); /* For unclear reasons, it appears we need the syscall to return without changing %EAX. Since %EAX is the return value, and can denote either success or failure, we must set up so that the driver logic copies it back unchanged. Also, note %EAX is of the guest registers written by VG_(sigframe_destroy). */ SET_STATUS_from_SysRes( VG_(mk_SysRes_x86_linux)( tst->arch.vex.guest_EAX ) ); /* Check to see if some any signals arose as a result of this. */ *flags |= SfPollAfter; } PRE(sys_modify_ldt) { PRINT("sys_modify_ldt ( %d, %p, %d )", ARG1,ARG2,ARG3); PRE_REG_READ3(int, "modify_ldt", int, func, void *, ptr, unsigned long, bytecount); if (ARG1 == 0) { /* read the LDT into ptr */ PRE_MEM_WRITE( "modify_ldt(ptr)", ARG2, ARG3 ); } if (ARG1 == 1 || ARG1 == 0x11) { /* write the LDT with the entry pointed at by ptr */ PRE_MEM_READ( "modify_ldt(ptr)", ARG2, sizeof(vki_modify_ldt_t) ); } /* "do" the syscall ourselves; the kernel never sees it */ SET_STATUS_from_SysRes( sys_modify_ldt( tid, ARG1, (void*)ARG2, ARG3 ) ); if (ARG1 == 0 && SUCCESS && RES > 0) { POST_MEM_WRITE( ARG2, RES ); } } PRE(sys_set_thread_area) { PRINT("sys_set_thread_area ( %p )", ARG1); PRE_REG_READ1(int, "set_thread_area", struct user_desc *, u_info) PRE_MEM_READ( "set_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) ); /* "do" the syscall ourselves; the kernel never sees it */ SET_STATUS_from_SysRes( sys_set_thread_area( tid, (void *)ARG1 ) ); } PRE(sys_get_thread_area) { PRINT("sys_get_thread_area ( %p )", ARG1); PRE_REG_READ1(int, "get_thread_area", struct user_desc *, u_info) PRE_MEM_WRITE( "get_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) ); /* "do" the syscall ourselves; the kernel never sees it */ SET_STATUS_from_SysRes( sys_get_thread_area( tid, (void *)ARG1 ) ); if (SUCCESS) { POST_MEM_WRITE( ARG1, sizeof(vki_modify_ldt_t) ); } } // Parts of this are x86-specific, but the *PEEK* cases are generic. // XXX: Why is the memory pointed to by ARG3 never checked? PRE(sys_ptrace) { PRINT("sys_ptrace ( %d, %d, %p, %p )", ARG1,ARG2,ARG3,ARG4); PRE_REG_READ4(int, "ptrace", long, request, long, pid, long, addr, long, data); switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: PRE_MEM_WRITE( "ptrace(peek)", ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: PRE_MEM_WRITE( "ptrace(getregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_GETFPXREGS: PRE_MEM_WRITE( "ptrace(getfpxregs)", ARG4, sizeof(struct vki_user_fxsr_struct) ); break; case VKI_PTRACE_SETREGS: PRE_MEM_READ( "ptrace(setregs)", ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_SETFPREGS: PRE_MEM_READ( "ptrace(setfpregs)", ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_SETFPXREGS: PRE_MEM_READ( "ptrace(setfpxregs)", ARG4, sizeof(struct vki_user_fxsr_struct) ); break; default: break; } } POST(sys_ptrace) { switch (ARG1) { case VKI_PTRACE_PEEKTEXT: case VKI_PTRACE_PEEKDATA: case VKI_PTRACE_PEEKUSR: POST_MEM_WRITE( ARG4, sizeof (long)); break; case VKI_PTRACE_GETREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct)); break; case VKI_PTRACE_GETFPREGS: POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct)); break; case VKI_PTRACE_GETFPXREGS: POST_MEM_WRITE( ARG4, sizeof(struct vki_user_fxsr_struct) ); break; default: break; } } static Addr deref_Addr ( ThreadId tid, Addr a, Char* s ) { Addr* a_p = (Addr*)a; PRE_MEM_READ( s, (Addr)a_p, sizeof(Addr) ); return *a_p; } PRE(sys_ipc) { PRINT("sys_ipc ( %d, %d, %d, %d, %p, %d )", ARG1,ARG2,ARG3,ARG4,ARG5,ARG6); // XXX: this is simplistic -- some args are not used in all circumstances. PRE_REG_READ6(int, "ipc", vki_uint, call, int, first, int, second, int, third, void *, ptr, long, fifth) switch (ARG1 /* call */) { case VKI_SEMOP: ML_(generic_PRE_sys_semop)( tid, ARG2, ARG5, ARG3 ); *flags |= SfMayBlock; break; case VKI_SEMGET: break; case VKI_SEMCTL: { UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" ); ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg ); break; } case VKI_SEMTIMEDOP: ML_(generic_PRE_sys_semtimedop)( tid, ARG2, ARG5, ARG3, ARG6 ); *flags |= SfMayBlock; break; case VKI_MSGSND: ML_(linux_PRE_sys_msgsnd)( tid, ARG2, ARG5, ARG3, ARG4 ); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; break; case VKI_MSGRCV: { Addr msgp; Word msgtyp; msgp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp), "msgrcv(msgp)" ); msgtyp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp), "msgrcv(msgp)" ); ML_(linux_PRE_sys_msgrcv)( tid, ARG2, msgp, ARG3, msgtyp, ARG4 ); if ((ARG4 & VKI_IPC_NOWAIT) == 0) *flags |= SfMayBlock; break; } case VKI_MSGGET: break; case VKI_MSGCTL: ML_(linux_PRE_sys_msgctl)( tid, ARG2, ARG3, ARG5 ); break; case VKI_SHMAT: { UWord w; PRE_MEM_WRITE( "shmat(raddr)", ARG4, sizeof(Addr) ); w = ML_(generic_PRE_sys_shmat)( tid, ARG2, ARG5, ARG3 ); if (w == 0) SET_STATUS_Failure( VKI_EINVAL ); else ARG5 = w; break; } case VKI_SHMDT: if (!ML_(generic_PRE_sys_shmdt)(tid, ARG5)) SET_STATUS_Failure( VKI_EINVAL ); break; case VKI_SHMGET: break; case VKI_SHMCTL: /* IPCOP_shmctl */ ML_(generic_PRE_sys_shmctl)( tid, ARG2, ARG3, ARG5 ); break; default: VG_(message)(Vg_DebugMsg, "FATAL: unhandled syscall(ipc) %d", ARG1 ); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } } POST(sys_ipc) { vg_assert(SUCCESS); switch (ARG1 /* call */) { case VKI_SEMOP: case VKI_SEMGET: break; case VKI_SEMCTL: { UWord arg = deref_Addr( tid, ARG5, "semctl(arg)" ); ML_(generic_PRE_sys_semctl)( tid, ARG2, ARG3, ARG4, arg ); break; } case VKI_SEMTIMEDOP: case VKI_MSGSND: break; case VKI_MSGRCV: { Addr msgp; Word msgtyp; msgp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgp), "msgrcv(msgp)" ); msgtyp = deref_Addr( tid, (Addr) (&((struct vki_ipc_kludge *)ARG5)->msgtyp), "msgrcv(msgp)" ); ML_(linux_POST_sys_msgrcv)( tid, RES, ARG2, msgp, ARG3, msgtyp, ARG4 ); break; } case VKI_MSGGET: break; case VKI_MSGCTL: ML_(linux_POST_sys_msgctl)( tid, RES, ARG2, ARG3, ARG5 ); break; case VKI_SHMAT: { Addr addr; /* force readability. before the syscall it is * indeed uninitialized, as can be seen in * glibc/sysdeps/unix/sysv/linux/shmat.c */ POST_MEM_WRITE( ARG4, sizeof( Addr ) ); addr = deref_Addr ( tid, ARG4, "shmat(addr)" ); if ( addr > 0 ) { ML_(generic_POST_sys_shmat)( tid, addr, ARG2, ARG5, ARG3 ); } break; } case VKI_SHMDT: ML_(generic_POST_sys_shmdt)( tid, RES, ARG5 ); break; case VKI_SHMGET: break; case VKI_SHMCTL: ML_(generic_POST_sys_shmctl)( tid, RES, ARG2, ARG3, ARG5 ); break; default: VG_(message)(Vg_DebugMsg, "FATAL: unhandled syscall(ipc) %d", ARG1 ); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } } PRE(old_mmap) { /* struct mmap_arg_struct { unsigned long addr; unsigned long len; unsigned long prot; unsigned long flags; unsigned long fd; unsigned long offset; }; */ UWord a1, a2, a3, a4, a5, a6; Addr advised; SysRes sres; MapRequest mreq; Bool mreq_ok; UWord* args = (UWord*)ARG1; PRE_REG_READ1(long, "old_mmap", struct mmap_arg_struct *, args); PRE_MEM_READ( "old_mmap(args)", (Addr)args, 6*sizeof(UWord) ); a1 = args[1-1]; a2 = args[2-1]; a3 = args[3-1]; a4 = args[4-1]; a5 = args[5-1]; a6 = args[6-1]; PRINT("old_mmap ( %p, %llu, %d, %d, %d, %d )", a1, (ULong)a2, a3, a4, a5, a6 ); if (a2 == 0) { /* SuSV3 says: If len is zero, mmap() shall fail and no mapping shall be established. */ SET_STATUS_Failure( VKI_EINVAL ); return; } if (!VG_IS_PAGE_ALIGNED(a1)) { /* zap any misaligned addresses. */ SET_STATUS_Failure( VKI_EINVAL ); return; } /* Figure out what kind of allocation constraints there are (fixed/hint/any), and ask aspacem what we should do. */ mreq.start = a1; mreq.len = a2; if (a4 & VKI_MAP_FIXED) { mreq.rkind = MFixed; } else if (a1 != 0) { mreq.rkind = MHint; } else { mreq.rkind = MAny; } /* Enquire ... */ advised = VG_(am_get_advisory)( &mreq, True/*client*/, &mreq_ok ); if (!mreq_ok) { /* Our request was bounced, so we'd better fail. */ SET_STATUS_Failure( VKI_EINVAL ); return; } /* Otherwise we're OK (so far). Install aspacem's choice of address, and let the mmap go through. */ a1 = advised; a4 |= VKI_MAP_FIXED; vg_assert(! FAILURE); sres = VG_(am_do_mmap_NO_NOTIFY)(a1, a2, a3, a4, a5, a6); SET_STATUS_from_SysRes(sres); if (!sres.isError) { /* Notify aspacem and the tool. */ ML_(notify_aspacem_and_tool_of_mmap)( (Addr)sres.val, /* addr kernel actually assigned */ a2, a3, args[4-1], /* the original flags value */ a5, a6 ); /* Load symbols? */ VG_(di_notify_mmap)( (Addr)sres.val ); } /* Stay sane */ if (SUCCESS && (args[4-1] & VKI_MAP_FIXED)) vg_assert(RES == args[0]); } // XXX: lstat64/fstat64/stat64 are generic, but not necessarily // applicable to every architecture -- I think only to 32-bit archs. // We're going to need something like linux/core_os32.h for such // things, eventually, I think. --njn PRE(sys_lstat64) { PRINT("sys_lstat64 ( %p(%s), %p )",ARG1,ARG1,ARG2); PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 ); PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_lstat64) { vg_assert(SUCCESS); if (RES == 0) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } } PRE(sys_stat64) { PRINT("sys_stat64 ( %p, %p )",ARG1,ARG2); PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf); PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 ); PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_stat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } PRE(sys_fstat64) { PRINT("sys_fstat64 ( %d, %p )",ARG1,ARG2); PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf); PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) ); } POST(sys_fstat64) { POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) ); } PRE(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) *flags |= SfMayBlock; PRINT("sys_socketcall ( %d, %p )",ARG1,ARG2); PRE_REG_READ2(long, "socketcall", int, call, unsigned long *, args); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: /* int socketpair(int d, int type, int protocol, int sv[2]); */ PRE_MEM_READ( "socketcall.socketpair(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_socketpair)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); break; case VKI_SYS_SOCKET: /* int socket(int domain, int type, int protocol); */ PRE_MEM_READ( "socketcall.socket(args)", ARG2, 3*sizeof(Addr) ); break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ PRE_MEM_READ( "socketcall.bind(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_bind)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ PRE_MEM_READ( "socketcall.listen(args)", ARG2, 2*sizeof(Addr) ); break; case VKI_SYS_ACCEPT: { /* int accept(int s, struct sockaddr *addr, int *addrlen); */ PRE_MEM_READ( "socketcall.accept(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; } case VKI_SYS_SENDTO: /* int sendto(int s, const void *msg, int len, unsigned int flags, const struct sockaddr *to, int tolen); */ PRE_MEM_READ( "socketcall.sendto(args)", ARG2, 6*sizeof(Addr) ); ML_(generic_PRE_sys_sendto)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_SEND: /* int send(int s, const void *msg, size_t len, int flags); */ PRE_MEM_READ( "socketcall.send(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_send)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_RECVFROM: /* int recvfrom(int s, void *buf, int len, unsigned int flags, struct sockaddr *from, int *fromlen); */ PRE_MEM_READ( "socketcall.recvfrom(args)", ARG2, 6*sizeof(Addr) ); ML_(generic_PRE_sys_recvfrom)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: /* int recv(int s, void *buf, int len, unsigned int flags); */ /* man 2 recv says: The recv call is normally used only on a connected socket (see connect(2)) and is identical to recvfrom with a NULL from parameter. */ PRE_MEM_READ( "socketcall.recv(args)", ARG2, 4*sizeof(Addr) ); ML_(generic_PRE_sys_recv)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: /* int connect(int sockfd, struct sockaddr *serv_addr, int addrlen ); */ PRE_MEM_READ( "socketcall.connect(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_connect)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SETSOCKOPT: /* int setsockopt(int s, int level, int optname, const void *optval, int optlen); */ PRE_MEM_READ( "socketcall.setsockopt(args)", ARG2, 5*sizeof(Addr) ); ML_(generic_PRE_sys_setsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKOPT: /* int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen); */ PRE_MEM_READ( "socketcall.getsockopt(args)", ARG2, 5*sizeof(Addr) ); ML_(generic_PRE_sys_getsockopt)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: /* int getsockname(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getsockname(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_getsockname)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: /* int getpeername(int s, struct sockaddr* name, int* namelen) */ PRE_MEM_READ( "socketcall.getpeername(args)", ARG2, 3*sizeof(Addr) ); ML_(generic_PRE_sys_getpeername)( tid, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: /* int shutdown(int s, int how); */ PRE_MEM_READ( "socketcall.shutdown(args)", ARG2, 2*sizeof(Addr) ); break; case VKI_SYS_SENDMSG: { /* int sendmsg(int s, const struct msghdr *msg, int flags); */ /* this causes warnings, and I don't get why. glibc bug? * (after all it's glibc providing the arguments array) PRE_MEM_READ( "socketcall.sendmsg(args)", ARG2, 3*sizeof(Addr) ); */ ML_(generic_PRE_sys_sendmsg)( tid, ARG2_0, ARG2_1 ); break; } case VKI_SYS_RECVMSG: { /* int recvmsg(int s, struct msghdr *msg, int flags); */ /* this causes warnings, and I don't get why. glibc bug? * (after all it's glibc providing the arguments array) PRE_MEM_READ("socketcall.recvmsg(args)", ARG2, 3*sizeof(Addr) ); */ ML_(generic_PRE_sys_recvmsg)( tid, ARG2_0, ARG2_1 ); break; } default: VG_(message)(Vg_DebugMsg,"Warning: unhandled socketcall 0x%x",ARG1); SET_STATUS_Failure( VKI_EINVAL ); break; } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } POST(sys_socketcall) { # define ARG2_0 (((UWord*)ARG2)[0]) # define ARG2_1 (((UWord*)ARG2)[1]) # define ARG2_2 (((UWord*)ARG2)[2]) # define ARG2_3 (((UWord*)ARG2)[3]) # define ARG2_4 (((UWord*)ARG2)[4]) # define ARG2_5 (((UWord*)ARG2)[5]) SysRes r; vg_assert(SUCCESS); switch (ARG1 /* request */) { case VKI_SYS_SOCKETPAIR: r = ML_(generic_POST_sys_socketpair)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SOCKET: r = ML_(generic_POST_sys_socket)( tid, VG_(mk_SysRes_Success)(RES) ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_BIND: /* int bind(int sockfd, struct sockaddr *my_addr, int addrlen); */ break; case VKI_SYS_LISTEN: /* int listen(int s, int backlog); */ break; case VKI_SYS_ACCEPT: /* int accept(int s, struct sockaddr *addr, int *addrlen); */ r = ML_(generic_POST_sys_accept)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); SET_STATUS_from_SysRes(r); break; case VKI_SYS_SENDTO: break; case VKI_SYS_SEND: break; case VKI_SYS_RECVFROM: ML_(generic_POST_sys_recvfrom)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4, ARG2_5 ); break; case VKI_SYS_RECV: ML_(generic_POST_sys_recv)( tid, RES, ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_CONNECT: break; case VKI_SYS_SETSOCKOPT: break; case VKI_SYS_GETSOCKOPT: ML_(generic_POST_sys_getsockopt)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2, ARG2_3, ARG2_4 ); break; case VKI_SYS_GETSOCKNAME: ML_(generic_POST_sys_getsockname)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_GETPEERNAME: ML_(generic_POST_sys_getpeername)( tid, VG_(mk_SysRes_Success)(RES), ARG2_0, ARG2_1, ARG2_2 ); break; case VKI_SYS_SHUTDOWN: break; case VKI_SYS_SENDMSG: break; case VKI_SYS_RECVMSG: ML_(generic_POST_sys_recvmsg)( tid, ARG2_0, ARG2_1 ); break; default: VG_(message)(Vg_DebugMsg,"FATAL: unhandled socketcall 0x%x",ARG1); VG_(core_panic)("... bye!\n"); break; /*NOTREACHED*/ } # undef ARG2_0 # undef ARG2_1 # undef ARG2_2 # undef ARG2_3 # undef ARG2_4 # undef ARG2_5 } /* Convert from non-RT to RT sigset_t's */ static void convert_sigset_to_rt(const vki_old_sigset_t *oldset, vki_sigset_t *set) { VG_(sigemptyset)(set); set->sig[0] = *oldset; } PRE(sys_sigaction) { struct vki_sigaction new, old; struct vki_sigaction *newp, *oldp; PRINT("sys_sigaction ( %d, %p, %p )", ARG1,ARG2,ARG3); PRE_REG_READ3(int, "sigaction", int, signum, const struct old_sigaction *, act, struct old_sigaction *, oldact); newp = oldp = NULL; if (ARG2 != 0) { struct vki_old_sigaction *sa = (struct vki_old_sigaction *)ARG2; PRE_MEM_READ( "sigaction(act->sa_handler)", (Addr)&sa->ksa_handler, sizeof(sa->ksa_handler)); PRE_MEM_READ( "sigaction(act->sa_mask)", (Addr)&sa->sa_mask, sizeof(sa->sa_mask)); PRE_MEM_READ( "sigaction(act->sa_flags)", (Addr)&sa->sa_flags, sizeof(sa->sa_flags)); if (ML_(safe_to_deref)(sa,sizeof(sa)) && (sa->sa_flags & VKI_SA_RESTORER)) PRE_MEM_READ( "sigaction(act->sa_restorer)", (Addr)&sa->sa_restorer, sizeof(sa->sa_restorer)); } if (ARG3 != 0) { PRE_MEM_WRITE( "sigaction(oldact)", ARG3, sizeof(struct vki_old_sigaction)); oldp = &old; } //jrs 20050207: what?! how can this make any sense? //if (VG_(is_kerror)(SYSRES)) // return; if (ARG2 != 0) { struct vki_old_sigaction *oldnew = (struct vki_old_sigaction *)ARG2; new.ksa_handler = oldnew->ksa_handler; new.sa_flags = oldnew->sa_flags; new.sa_restorer = oldnew->sa_restorer; convert_sigset_to_rt(&oldnew->sa_mask, &new.sa_mask); newp = &new; } SET_STATUS_from_SysRes( VG_(do_sys_sigaction)(ARG1, newp, oldp) ); if (ARG3 != 0 && SUCCESS && RES == 0) { struct vki_old_sigaction *oldold = (struct vki_old_sigaction *)ARG3; oldold->ksa_handler = oldp->ksa_handler; oldold->sa_flags = oldp->sa_flags; oldold->sa_restorer = oldp->sa_restorer; oldold->sa_mask = oldp->sa_mask.sig[0]; } } POST(sys_sigaction) { vg_assert(SUCCESS); if (RES == 0 && ARG3 != 0) POST_MEM_WRITE( ARG3, sizeof(struct vki_old_sigaction)); } #undef PRE #undef POST /* --------------------------------------------------------------------- The x86/Linux syscall table ------------------------------------------------------------------ */ /* Add an x86-linux specific wrapper to a syscall table. */ #define PLAX_(sysno, name) WRAPPER_ENTRY_X_(x86_linux, sysno, name) #define PLAXY(sysno, name) WRAPPER_ENTRY_XY(x86_linux, sysno, name) // This table maps from __NR_xxx syscall numbers (from // linux/include/asm-i386/unistd.h) to the appropriate PRE/POST sys_foo() // wrappers on x86 (as per sys_call_table in linux/arch/i386/kernel/entry.S). // // For those syscalls not handled by Valgrind, the annotation indicate its // arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/? // (unknown). const SyscallTableEntry ML_(syscall_table)[] = { //zz // (restart_syscall) // 0 GENX_(__NR_exit, sys_exit), // 1 GENX_(__NR_fork, sys_fork), // 2 GENXY(__NR_read, sys_read), // 3 GENX_(__NR_write, sys_write), // 4 GENXY(__NR_open, sys_open), // 5 GENXY(__NR_close, sys_close), // 6 GENXY(__NR_waitpid, sys_waitpid), // 7 GENXY(__NR_creat, sys_creat), // 8 GENX_(__NR_link, sys_link), // 9 GENX_(__NR_unlink, sys_unlink), // 10 GENX_(__NR_execve, sys_execve), // 11 GENX_(__NR_chdir, sys_chdir), // 12 GENXY(__NR_time, sys_time), // 13 GENX_(__NR_mknod, sys_mknod), // 14 GENX_(__NR_chmod, sys_chmod), // 15 //zz LINX_(__NR_lchown, sys_lchown16), // 16 GENX_(__NR_break, sys_ni_syscall), // 17 //zz // (__NR_oldstat, sys_stat), // 18 (obsolete) LINX_(__NR_lseek, sys_lseek), // 19 GENX_(__NR_getpid, sys_getpid), // 20 LINX_(__NR_mount, sys_mount), // 21 LINX_(__NR_umount, sys_oldumount), // 22 LINX_(__NR_setuid, sys_setuid16), // 23 ## P LINX_(__NR_getuid, sys_getuid16), // 24 ## P //zz //zz // (__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN) PLAXY(__NR_ptrace, sys_ptrace), // 26 GENX_(__NR_alarm, sys_alarm), // 27 //zz // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete GENX_(__NR_pause, sys_pause), // 29 LINX_(__NR_utime, sys_utime), // 30 GENX_(__NR_stty, sys_ni_syscall), // 31 GENX_(__NR_gtty, sys_ni_syscall), // 32 GENX_(__NR_access, sys_access), // 33 GENX_(__NR_nice, sys_nice), // 34 GENX_(__NR_ftime, sys_ni_syscall), // 35 GENX_(__NR_sync, sys_sync), // 36 GENX_(__NR_kill, sys_kill), // 37 GENX_(__NR_rename, sys_rename), // 38 GENX_(__NR_mkdir, sys_mkdir), // 39 GENX_(__NR_rmdir, sys_rmdir), // 40 GENXY(__NR_dup, sys_dup), // 41 LINXY(__NR_pipe, sys_pipe), // 42 GENXY(__NR_times, sys_times), // 43 GENX_(__NR_prof, sys_ni_syscall), // 44 //zz GENX_(__NR_brk, sys_brk), // 45 LINX_(__NR_setgid, sys_setgid16), // 46 LINX_(__NR_getgid, sys_getgid16), // 47 //zz // (__NR_signal, sys_signal), // 48 */* (ANSI C) LINX_(__NR_geteuid, sys_geteuid16), // 49 LINX_(__NR_getegid, sys_getegid16), // 50 GENX_(__NR_acct, sys_acct), // 51 LINX_(__NR_umount2, sys_umount), // 52 GENX_(__NR_lock, sys_ni_syscall), // 53 GENXY(__NR_ioctl, sys_ioctl), // 54 GENXY(__NR_fcntl, sys_fcntl), // 55 GENX_(__NR_mpx, sys_ni_syscall), // 56 GENX_(__NR_setpgid, sys_setpgid), // 57 GENX_(__NR_ulimit, sys_ni_syscall), // 58 //zz // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete //zz GENX_(__NR_umask, sys_umask), // 60 GENX_(__NR_chroot, sys_chroot), // 61 //zz // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated GENXY(__NR_dup2, sys_dup2), // 63 GENX_(__NR_getppid, sys_getppid), // 64 GENX_(__NR_getpgrp, sys_getpgrp), // 65 GENX_(__NR_setsid, sys_setsid), // 66 PLAXY(__NR_sigaction, sys_sigaction), // 67 //zz // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C) //zz // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C) //zz LINX_(__NR_setreuid, sys_setreuid16), // 70 LINX_(__NR_setregid, sys_setregid16), // 71 //zz GENX_(__NR_sigsuspend, sys_sigsuspend), // 72 LINXY(__NR_sigpending, sys_sigpending), // 73 //zz // (__NR_sethostname, sys_sethostname), // 74 */* //zz GENX_(__NR_setrlimit, sys_setrlimit), // 75 GENXY(__NR_getrlimit, sys_old_getrlimit), // 76 GENXY(__NR_getrusage, sys_getrusage), // 77 GENXY(__NR_gettimeofday, sys_gettimeofday), // 78 GENX_(__NR_settimeofday, sys_settimeofday), // 79 LINXY(__NR_getgroups, sys_getgroups16), // 80 LINX_(__NR_setgroups, sys_setgroups16), // 81 PLAX_(__NR_select, old_select), // 82 GENX_(__NR_symlink, sys_symlink), // 83 //zz // (__NR_oldlstat, sys_lstat), // 84 -- obsolete //zz GENX_(__NR_readlink, sys_readlink), // 85 //zz // (__NR_uselib, sys_uselib), // 86 */Linux //zz // (__NR_swapon, sys_swapon), // 87 */Linux //zz // (__NR_reboot, sys_reboot), // 88 */Linux //zz // (__NR_readdir, old_readdir), // 89 -- superseded //zz PLAX_(__NR_mmap, old_mmap), // 90 GENXY(__NR_munmap, sys_munmap), // 91 GENX_(__NR_truncate, sys_truncate), // 92 GENX_(__NR_ftruncate, sys_ftruncate), // 93 GENX_(__NR_fchmod, sys_fchmod), // 94 LINX_(__NR_fchown, sys_fchown16), // 95 GENX_(__NR_getpriority, sys_getpriority), // 96 GENX_(__NR_setpriority, sys_setpriority), // 97 GENX_(__NR_profil, sys_ni_syscall), // 98 GENXY(__NR_statfs, sys_statfs), // 99 GENXY(__NR_fstatfs, sys_fstatfs), // 100 LINX_(__NR_ioperm, sys_ioperm), // 101 PLAXY(__NR_socketcall, sys_socketcall), // 102 x86/Linux-only LINXY(__NR_syslog, sys_syslog), // 103 GENXY(__NR_setitimer, sys_setitimer), // 104 GENXY(__NR_getitimer, sys_getitimer), // 105 GENXY(__NR_stat, sys_newstat), // 106 GENXY(__NR_lstat, sys_newlstat), // 107 GENXY(__NR_fstat, sys_newfstat), // 108 //zz // (__NR_olduname, sys_uname), // 109 -- obsolete //zz GENX_(__NR_iopl, sys_iopl), // 110 LINX_(__NR_vhangup, sys_vhangup), // 111 GENX_(__NR_idle, sys_ni_syscall), // 112 //zz // (__NR_vm86old, sys_vm86old), // 113 x86/Linux-only GENXY(__NR_wait4, sys_wait4), // 114 //zz //zz // (__NR_swapoff, sys_swapoff), // 115 */Linux LINXY(__NR_sysinfo, sys_sysinfo), // 116 PLAXY(__NR_ipc, sys_ipc), // 117 GENX_(__NR_fsync, sys_fsync), // 118 PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux PLAX_(__NR_clone, sys_clone), // 120 //zz // (__NR_setdomainname, sys_setdomainname), // 121 */*(?) GENXY(__NR_uname, sys_newuname), // 122 PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123 //zz LINXY(__NR_adjtimex, sys_adjtimex), // 124 //zz GENXY(__NR_mprotect, sys_mprotect), // 125 LINXY(__NR_sigprocmask, sys_sigprocmask), // 126 //zz // Nb: create_module() was removed 2.4-->2.6 GENX_(__NR_create_module, sys_ni_syscall), // 127 GENX_(__NR_init_module, sys_init_module), // 128 //zz // (__NR_delete_module, sys_delete_module), // 129 (*/Linux)? //zz //zz // Nb: get_kernel_syms() was removed 2.4-->2.6 GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130 LINX_(__NR_quotactl, sys_quotactl), // 131 GENX_(__NR_getpgid, sys_getpgid), // 132 GENX_(__NR_fchdir, sys_fchdir), // 133 //zz // (__NR_bdflush, sys_bdflush), // 134 */Linux //zz //zz // (__NR_sysfs, sys_sysfs), // 135 SVr4 LINX_(__NR_personality, sys_personality), // 136 GENX_(__NR_afs_syscall, sys_ni_syscall), // 137 LINX_(__NR_setfsuid, sys_setfsuid16), // 138 LINX_(__NR_setfsgid, sys_setfsgid16), // 139 LINXY(__NR__llseek, sys_llseek), // 140 GENXY(__NR_getdents, sys_getdents), // 141 GENX_(__NR__newselect, sys_select), // 142 GENX_(__NR_flock, sys_flock), // 143 GENX_(__NR_msync, sys_msync), // 144 GENXY(__NR_readv, sys_readv), // 145 GENX_(__NR_writev, sys_writev), // 146 GENX_(__NR_getsid, sys_getsid), // 147 GENX_(__NR_fdatasync, sys_fdatasync), // 148 LINXY(__NR__sysctl, sys_sysctl), // 149 GENX_(__NR_mlock, sys_mlock), // 150 GENX_(__NR_munlock, sys_munlock), // 151 GENX_(__NR_mlockall, sys_mlockall), // 152 LINX_(__NR_munlockall, sys_munlockall), // 153 LINXY(__NR_sched_setparam, sys_sched_setparam), // 154 LINXY(__NR_sched_getparam, sys_sched_getparam), // 155 LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156 LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157 LINX_(__NR_sched_yield, sys_sched_yield), // 158 LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159 LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160 //zz //LINX?(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161 */* GENXY(__NR_nanosleep, sys_nanosleep), // 162 GENX_(__NR_mremap, sys_mremap), // 163 LINX_(__NR_setresuid, sys_setresuid16), // 164 LINXY(__NR_getresuid, sys_getresuid16), // 165 //zz // (__NR_vm86, sys_vm86), // 166 x86/Linux-only GENX_(__NR_query_module, sys_ni_syscall), // 167 GENXY(__NR_poll, sys_poll), // 168 //zz // (__NR_nfsservctl, sys_nfsservctl), // 169 */Linux //zz LINX_(__NR_setresgid, sys_setresgid16), // 170 LINXY(__NR_getresgid, sys_getresgid16), // 171 LINX_(__NR_prctl, sys_prctl), // 172 PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173 x86/Linux only? LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174 LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175 LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176 LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 177 LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 178 LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179 GENXY(__NR_pread64, sys_pread64), // 180 GENX_(__NR_pwrite64, sys_pwrite64), // 181 LINX_(__NR_chown, sys_chown16), // 182 GENXY(__NR_getcwd, sys_getcwd), // 183 LINXY(__NR_capget, sys_capget), // 184 LINX_(__NR_capset, sys_capset), // 185 GENXY(__NR_sigaltstack, sys_sigaltstack), // 186 LINXY(__NR_sendfile, sys_sendfile), // 187 GENXY(__NR_getpmsg, sys_getpmsg), // 188 GENX_(__NR_putpmsg, sys_putpmsg), // 189 // Nb: we treat vfork as fork GENX_(__NR_vfork, sys_fork), // 190 GENXY(__NR_ugetrlimit, sys_getrlimit), // 191 LINX_(__NR_mmap2, sys_mmap2), // 192 GENX_(__NR_truncate64, sys_truncate64), // 193 GENX_(__NR_ftruncate64, sys_ftruncate64), // 194 PLAXY(__NR_stat64, sys_stat64), // 195 PLAXY(__NR_lstat64, sys_lstat64), // 196 PLAXY(__NR_fstat64, sys_fstat64), // 197 GENX_(__NR_lchown32, sys_lchown), // 198 GENX_(__NR_getuid32, sys_getuid), // 199 GENX_(__NR_getgid32, sys_getgid), // 200 GENX_(__NR_geteuid32, sys_geteuid), // 201 GENX_(__NR_getegid32, sys_getegid), // 202 GENX_(__NR_setreuid32, sys_setreuid), // 203 GENX_(__NR_setregid32, sys_setregid), // 204 GENXY(__NR_getgroups32, sys_getgroups), // 205 GENX_(__NR_setgroups32, sys_setgroups), // 206 GENX_(__NR_fchown32, sys_fchown), // 207 LINX_(__NR_setresuid32, sys_setresuid), // 208 LINXY(__NR_getresuid32, sys_getresuid), // 209 LINX_(__NR_setresgid32, sys_setresgid), // 210 LINXY(__NR_getresgid32, sys_getresgid), // 211 GENX_(__NR_chown32, sys_chown), // 212 GENX_(__NR_setuid32, sys_setuid), // 213 GENX_(__NR_setgid32, sys_setgid), // 214 LINX_(__NR_setfsuid32, sys_setfsuid), // 215 LINX_(__NR_setfsgid32, sys_setfsgid), // 216 //zz // (__NR_pivot_root, sys_pivot_root), // 217 */Linux GENXY(__NR_mincore, sys_mincore), // 218 GENX_(__NR_madvise, sys_madvise), // 219 GENXY(__NR_getdents64, sys_getdents64), // 220 GENXY(__NR_fcntl64, sys_fcntl64), // 221 GENX_(222, sys_ni_syscall), // 222 GENX_(223, sys_ni_syscall), // 223 LINX_(__NR_gettid, sys_gettid), // 224 //zz // (__NR_readahead, sys_readahead), // 225 */(Linux?) LINX_(__NR_setxattr, sys_setxattr), // 226 LINX_(__NR_lsetxattr, sys_lsetxattr), // 227 LINX_(__NR_fsetxattr, sys_fsetxattr), // 228 LINXY(__NR_getxattr, sys_getxattr), // 229 LINXY(__NR_lgetxattr, sys_lgetxattr), // 230 LINXY(__NR_fgetxattr, sys_fgetxattr), // 231 LINXY(__NR_listxattr, sys_listxattr), // 232 LINXY(__NR_llistxattr, sys_llistxattr), // 233 LINXY(__NR_flistxattr, sys_flistxattr), // 234 LINX_(__NR_removexattr, sys_removexattr), // 235 LINX_(__NR_lremovexattr, sys_lremovexattr), // 236 LINX_(__NR_fremovexattr, sys_fremovexattr), // 237 //zz LINX_(__NR_tkill, sys_tkill), // 238 */Linux LINXY(__NR_sendfile64, sys_sendfile64), // 239 LINXY(__NR_futex, sys_futex), // 240 LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 241 LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 242 PLAX_(__NR_set_thread_area, sys_set_thread_area), // 243 PLAX_(__NR_get_thread_area, sys_get_thread_area), // 244 LINXY(__NR_io_setup, sys_io_setup), // 245 LINX_(__NR_io_destroy, sys_io_destroy), // 246 LINXY(__NR_io_getevents, sys_io_getevents), // 247 LINX_(__NR_io_submit, sys_io_submit), // 248 LINXY(__NR_io_cancel, sys_io_cancel), // 249 LINX_(__NR_fadvise64, sys_fadvise64), // 250 */(Linux?) GENX_(251, sys_ni_syscall), // 251 LINX_(__NR_exit_group, sys_exit_group), // 252 GENXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 253 LINXY(__NR_epoll_create, sys_epoll_create), // 254 LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 255 LINXY(__NR_epoll_wait, sys_epoll_wait), // 256 //zz // (__NR_remap_file_pages, sys_remap_file_pages), // 257 */Linux LINX_(__NR_set_tid_address, sys_set_tid_address), // 258 LINXY(__NR_timer_create, sys_timer_create), // 259 LINXY(__NR_timer_settime, sys_timer_settime), // (timer_create+1) LINXY(__NR_timer_gettime, sys_timer_gettime), // (timer_create+2) LINX_(__NR_timer_getoverrun, sys_timer_getoverrun),//(timer_create+3) LINX_(__NR_timer_delete, sys_timer_delete), // (timer_create+4) LINX_(__NR_clock_settime, sys_clock_settime), // (timer_create+5) LINXY(__NR_clock_gettime, sys_clock_gettime), // (timer_create+6) LINXY(__NR_clock_getres, sys_clock_getres), // (timer_create+7) LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// (timer_create+8) */* GENXY(__NR_statfs64, sys_statfs64), // 268 GENXY(__NR_fstatfs64, sys_fstatfs64), // 269 LINX_(__NR_tgkill, sys_tgkill), // 270 */Linux GENX_(__NR_utimes, sys_utimes), // 271 LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 272 */(Linux?) GENX_(__NR_vserver, sys_ni_syscall), // 273 //zz // (__NR_mbind, sys_mbind), // 274 ?/? //zz LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 275 ?/? LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 276 ?/? LINXY(__NR_mq_open, sys_mq_open), // 277 LINX_(__NR_mq_unlink, sys_mq_unlink), // (mq_open+1) LINX_(__NR_mq_timedsend, sys_mq_timedsend), // (mq_open+2) LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// (mq_open+3) LINX_(__NR_mq_notify, sys_mq_notify), // (mq_open+4) LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // (mq_open+5) GENX_(__NR_sys_kexec_load, sys_ni_syscall), // 283 LINXY(__NR_waitid, sys_waitid), // 284 GENX_(285, sys_ni_syscall), // 285 // LINX_(__NR_add_key, sys_add_key), // 286 // LINX_(__NR_request_key, sys_request_key), // 287 // LINXY(__NR_keyctl, sys_keyctl), // 288 // LINX_(__NR_ioprio_set, sys_ioprio_set), // 289 // LINX_(__NR_ioprio_get, sys_ioprio_get), // 290 LINX_(__NR_inotify_init, sys_inotify_init), // 291 LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 292 LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 293 }; const UInt ML_(syscall_table_size) = sizeof(ML_(syscall_table)) / sizeof(ML_(syscall_table)[0]); /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/