Sync VEX/LICENSE.GPL with top-level COPYING file. We used 3 different
addresses for writing to the FSF to receive a copy of the GPL. Replace
all different variants with an URL <http://www.gnu.org/licenses/>.
The following files might still have some slightly different (L)GPL
copyright notice because they were derived from other programs:
- files under coregrind/m_demangle which come from libiberty:
cplus-dem.c, d-demangle.c, demangle.h, rust-demangle.c,
safe-ctype.c and safe-ctype.h
- coregrind/m_demangle/dyn-string.[hc] derived from GCC.
- coregrind/m_demangle/ansidecl.h derived from glibc.
- VEX files for FMA detived from glibc:
host_generic_maddf.h and host_generic_maddf.c
- files under coregrin/m_debuginfo derived from LZO:
lzoconf.h, lzodefs.h, minilzo-inl.c and minilzo.h
- files under coregrind/m_gdbserver detived from GDB:
gdb/signals.h, inferiors.c, regcache.c, regcache.h,
regdef.h, remote-utils.c, server.c, server.h, signals.c,
target.c, target.h and utils.c
Plus the following test files:
- none/tests/ppc32/testVMX.c derived from testVMX.
- ppc tests derived from QEMU: jm-insns.c, ppc64_helpers.h
and test_isa_3_0.c
- tests derived from bzip2 (with embedded GPL text in code):
hackedbz2.c, origin5-bz2.c, varinfo6.c
- tests detived from glibc: str_tester.c, pth_atfork1.c
- test detived from GCC libgomp: tc17_sembar.c
- performance tests derived from bzip2 or tinycc (with embedded GPL
text in code): bz2.c, test_input_for_tinycc.c and tinycc.c
This patch implements the flag --delta-stacktrace=yes/no.
Yes indicates to calculate the full history stack traces by
changing just the last frame if no call/return instruction was
executed.
This can speed up helgrind by up to 25%.
This flags is currently set to yes only on linux x86 and amd64, as some
platform dependent validation of the used heuristics is needed before
setting the default to yes on a platform. See function check_cached_rcec_ok
in libhb_core.c for more details about how to validate/check the behaviour
on a new platform.
At various places, there were either some assumption that the 'end'
boundary (highest address) was either not included, included,
or was the highest addressable word, or the highest addressable byte.
This e.g. was very visible when doing:
./vg-in-place -d -d ./helgrind/tests/tc01_simple_race|&grep regi
giving
--24040:2:stacks register 0xBEDB4000-0xBEDB4FFF as stack 0
--24040:2:stacks register 0x402C000-0x4A2C000 as stack 1
showing that the main stack end was (on x86) not the highest word
but the highest byte, while for the thread 1, the registered end
was a byte not part of the stack.
The attached patch ensures that stack bounds semantic are documented and
consistent. Also, some of the stack handling code is factorised.
The convention that the patch ensures and documents is:
start is the lowest addressable byte, end is the highest addressable byte.
(the words 'min' and 'max' have been kept when already used, as this wording is
consistent with the new semantic of start/end).
In various debug log, used brackets [ and ] to make clear that
both bounds are included.
The code to guess and register the client stack was duplicated
in all the platform specific syswrap-<plat>-<os>.c files.
Code has been factorised in syswrap-generic.c
The patch has been regression tested on
x86, amd64, ppc32/64, s390x.
It has been compiled and one test run on arm64.
Not compiled/not tested on darwin, android, mips32/64, arm
More in details, the patch does the following:
coregrind/pub_core_aspacemgr.h
include/valgrind.h
include/pub_tool_machine.h
coregrind/pub_core_scheduler.h
coregrind/pub_core_stacks.h
- document start/end semantic in various functions
also in pub_tool_machine.h:
- replaces unclear 'bottommost address' by 'lowest address'
(unclear as stack bottom is or at least can be interpreted as
the 'functional' bottom of the stack, which is the highest
address for 'stack growing downwards').
coregrind/pub_core_initimg.h
replace unclear clstack_top by clstack_end
coregrind/m_main.c
updated to clstack_end
coregrind/pub_core_threadstate.h
renamed client_stack_highest_word to client_stack_highest_byte
coregrind/m_scheduler/scheduler.c
computes client_stack_highest_byte as the highest addressable byte
Update comments in call to VG_(show_sched_status)
coregrind/m_machine.c
coregrind/m_stacktrace.c
updated to client_stack_highest_byte, and switched
stack_lowest/highest_word to stack_lowest/highest_byte accordingly
coregrind/m_stacks.c
clarify semantic of start/end,
added a comment to indicate why we invert start/end in register call
(note that the code find_stack_by_addr was already assuming that
end was included as the checks were doing e.g.
sp >= i->start && sp <= i->end
coregrind/pub_core_clientstate.h
coregrind/m_clientstate.c
renames Addr VG_(clstk_base) to Addr VG_(clstk_start_base)
(start to indicate it is the lowest address, base suffix kept
to indicate it is the initial lowest address).
coregrind/m_initimg/initimg-darwin.c
updated to VG_(clstk_start_base)
replace unclear iicii.clstack_top by iicii.clstack_end
updated clstack_max_size computation according to both bounds included.
coregrind/m_initimg/initimg-linux.c
updated to VG_(clstk_start_base)
updated VG_(clstk_end) computation according to both bounds included.
replace unclear iicii.clstack_top by iicii.clstack_end
coregrind/pub_core_aspacemgr.h
extern Addr VG_(am_startup) : clarify semantic of the returned value
coregrind/m_aspacemgr/aspacemgr-linux.c
removed a copy of a comment that was already in pub_core_aspacemgr.h
(avoid double maintenance)
renamed unclear suggested_clstack_top to suggested_clstack_end
(note that here, it looks like suggested_clstack_top was already
the last addressable byte)
* factorisation of the stack guessing and registration causes
mechanical changes in the following files:
coregrind/m_syswrap/syswrap-ppc64-linux.c
coregrind/m_syswrap/syswrap-x86-darwin.c
coregrind/m_syswrap/syswrap-amd64-linux.c
coregrind/m_syswrap/syswrap-arm-linux.c
coregrind/m_syswrap/syswrap-generic.c
coregrind/m_syswrap/syswrap-mips64-linux.c
coregrind/m_syswrap/syswrap-ppc32-linux.c
coregrind/m_syswrap/syswrap-amd64-darwin.c
coregrind/m_syswrap/syswrap-mips32-linux.c
coregrind/m_syswrap/priv_syswrap-generic.h
coregrind/m_syswrap/syswrap-x86-linux.c
coregrind/m_syswrap/syswrap-s390x-linux.c
coregrind/m_syswrap/syswrap-darwin.c
coregrind/m_syswrap/syswrap-arm64-linux.c
Some files to look at more in details:
syswrap-darwin.c : the handling of sysctl(kern.usrstack) looked
buggy to me, and has probably be made correct by the fact that
VG_(clstk_end) is now the last addressable byte. However,unsure
about this, as I could not find any documentation about
sysctl(kern.usrstack). I only find several occurences on the web,
showing that the result of this is page aligned, which I guess
means it must be 1+ the last addressable byte.
syswrap-x86-darwin.c and syswrap-amd64-darwin.c
I suspect the code that was computing client_stack_highest_word
was wrong, and the patch makes it correct.
syswrap-mips64-linux.c
not sure what to do for this code. This is the only code
that was guessing the stack differently from others.
Kept (almost) untouched. To be discussed with mips maintainers.
coregrind/pub_core_libcassert.h
coregrind/m_libcassert.c
* void VG_(show_sched_status):
renamed Bool valgrind_stack_usage to Bool stack_usage
if stack_usage, shows both the valgrind stack usage and
the client stack boundaries
coregrind/m_scheduler/scheduler.c
coregrind/m_gdbserver/server.c
coregrind/m_gdbserver/remote-utils.c
Updated comments in callers to VG_(show_sched_status)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14392
the process. Make ML_(am_exit) and VG_(exit) use it, thereby avoiding
double maintenance.
Introduce libcbase_assert macro and use it in VG_(strncpy_safely) to
document the case that function cannot handle.
Add stub functions to memcheck/tests/unit_libcbase.c to satisfy new
dependencies.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14185
to ask GDB server to stop before program execution, at the end
of the program execution and on Valgrind internal errors.
- A new monitor command "v.set hostvisibility" that allows GDB server
to provide access to Valgrind internal host status/memory.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13900
making it easier to understand the memory and/or oom situation.
No functional (user level) change.
* For --profile-heap=yes, sort the cost centers by decreasing size,
so that the most relevant cost centers are closed to the arena
total.
* factorise duplicated code calling a series of print stat functions
* VG_(show_sched_status)
optionally show the host stacktrace
the amount of valgrind stack used by each thread
the exited threads
* various functions: update to add VG_(show_sched_status) new
args, keeping the same info production as before.
* In case of out of memory situation detected by m_mallocfree.c,
reports more information:
valgrind and tool stats
scheduler status (full information)
* gdbserver v.info scheduler :
show full information.
The oom behaviour/reporting was tested using a small
program causing an OOM, and having several threads
(some terminated, some still active).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13897
all take const HChar * arguments.
__FILE__ and __func__ expand into string literals (or character
arrays initialised by them), as do strings created by the preprocessor
e.g. #stuff.
This change reduces the number of warnings from 17000+ to ~5500
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13039
the changes to do with reading and using ELF and DWARF3 info.
This breaks all targets except amd64-linux and x86-linux.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@10982
snapshots on ppc32-linux in the presence of functions subject to
leaf-function optimisations.
At the same time, simplify the stack unwinding logic by basically
implementing it separately for each target. Having a single piece of
logic for amd64 and x86 was tenable, but merging ppc32 into it is too
confusing. So now there is an x86/amd64 unwinder and a ppc32
unwinder.
This requires plumbing a link-register value into
VG_(get_StackTrace2), and that in turn requires passing it around
several other stack-trace-related functions. Hence 7 changed files.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@4464
As part of this, killed the VG_STRINGIFY macro, which was used to expand
out names like "VG_(foo)" and "vgPlain_foo" in assertion failure
messages. This is good since we actually want the "VG_(foo)" form used
in these messages.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@3842