This patch avoids dereferencing absori that are in other CUs than
the CU currently being read.
This avoids dwarf reading errors when reading inlined information.
The bypass results in inlined function being reported as
UnknownInlinedFun rather than the real correct function name.
--read-var-info=yes is still broken for unknown reasons
(probably type reading is doing some other cross-CU references ?).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14476
Revision r14464 made it so that debug alt files could be found by their
build-id or their (relative) file path. Debug alt files are matched using
the given build-id, but by crc. Calculating the full CRC is costly, but
currently still needed to avoid misidentifying the main file as debug
file. Slightly more efficient would be to use fstat to check we aren't
actually opening the main file under any other name (but that only works
for local DiImages). Or we could check that the file being opened actually
has at least one .debug* section. But this change was the minimal patch
to make things work as before.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14474
readdwarf3 would only look for alt dwz files using the build-id.
But alt files can be installed relative to the debug (or main) file.
Fix find_debug_file to allow searching of relative files even if
we don't want an ET_REL (rel_ok) file, and pass the build-id to
open_debug_file so it can be checked. Add the debug file path to
_DebugInfoFSM and set it in find_debug_file once opened. Pass the
dbgname or filename as relative file to resolve an altfile in
read_elf_debug_info when we ahava an debugaltlink_escn.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14464
which, despite the name, is a pointer to an unsigned long.
So we should be passing arguments of matching type.
Spotted by the Coverity checker.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14431
(used for ppc64 platforms) #ifdef-ed and accessed by macros
that becomes NOP on non ppc64 platforms.
This decreases the debuginfo memory by about 2.5 Mb on a big 32 bit application.
Note : doing that, some questions were encountered in the way
tocptr and local_ep have (or do not have) to be copied/maintained
in storage.c canonicaliseSymtab
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14273
files in the dwarf3 reader.
Basically, the change consists in replacing in the DiInlLoc struct
const HChar* filename; /* caller source filename */
by
UInt fndn_ix; /* index in di->fndnpool of caller source
dirname/filename */
A similar change is done in DiVariable struct, as the
read_filename_Table code is shared between the inline info reader
and the varinfo reader.
Note however that outputting dirname in variable description
is not done. Unclear if that is desired or not.
It should be trivially doable however.
Replacing filename by fndn_ix implies a bunch of semi-mechanical
changes.
The code to read the directory names is in the new function
static
XArray* read_dirname_xa (struct _DebugInfo* di, const HChar *compdir,
Cursor *c,
Bool td3 )
Note that readdwarf.c and readdwarf3.c have significant duplicated
logic. Would be nice to integrate these 2 dwarf readers in one
single reader. This function is directly inspired from
an equivalent piece of code in readdwarf.c.
Modified memcheck/tests/varinfo5.vgtest to test the dirname appears
in the inlined functions.
Impact on memory is neglectable (a few Kb on a big executable).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14245
to add PPC64 LE support. The other two patches can be found in Bugzillas
334384 and 334836.
POWER PC, add the functional Little Endian support, patch 2
The IBM POWER processor now supports both Big Endian and Little Endian.
The ABI for Little Endian also changes. Specifically, the function
descriptor is not used, the stack size changed, accessing the TOC
changed. Functions now have a local and a global entry point. Register
r2 contains the TOC for local calls and register r12 contains the TOC
for global calls. This patch makes the functional changes to the
Valgrind tool. The patch makes the changes needed for the
none/tests/ppc32 and none/tests/ppc64 Makefile.am. A number of the
ppc specific tests have Endian dependencies that are not fixed in
this patch. They are fixed in the next patch.
Per Julian's comments renamed coregrind/m_dispatch/dispatch-ppc64-linux.S
to coregrind/m_dispatch/dispatch-ppc64be-linux.S Created new file for LE
coregrind/m_dispatch/dispatch-ppc64le-linux.S. The same was done for
coregrind/m_syswrap/syscall-ppc-linux.S.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14239
to add PPC64 LE support. The other two patches can be found in Bugzillas
334834 and 334836. The commit does not have a VEX commit associated with it.
POWER PC, add initial Little Endian support
The IBM POWER processor now supports both Big Endian and Little Endian.
This patch renames the #defines with the name ppc64 to ppc64be for the BE
specific code. This patch adds the Little Endian #define ppc64le to the
Additionally, a few functions are renamed to remove BE from the name if the
function is used by BE and LE. Functions that are BE specific have BE put
in the name.
The goals of this patch is to make sure #defines, function names and
variables consistently use PPC64/ppc64 if it refers to BE and LE,
PPC64BE/ppc64be if it is specific to BE, PPC64LE/ppc64le if it is LE
specific. The patch does not break the code for PPC64 Big Endian.
The test files memcheck/tests/atomic_incs.c, tests/power_insn_available.c
and tests/power_insn_available.c are also updated to the new #define
definition for PPC64 BE.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14238
Based on investigation and patch by Matthias Schwarzott.
(no small test found that reproduced the problem,
but the equivalent patch given in bug 338024 fixed the inlined stack
trace in a big shared lib).
Would be nice however to have a small test case ...
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14236
r14158 introduced a dedup pool to store pairs (filename,dirname).
The windows debug info reader (readpdb.c) performance was still to be
improved, as calls to ML_(addFnDn) were done for each line loc to add.
With this patch, the nr of calls to ML_(addFnDn) should be reduced
significantly.
Code has been compiled and regtested on linux, but no windows/wine test
was done.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14183
instead of failing. This makes some of the memcheck/tests/varinfo*
tests work somewhat correctly on arm64-linux.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14164
On a big executable, the trunk needs:
dinfo: 134873088/71438336 max/curr mmap'd, 134607808/66717872 max/curr
With the patch, we have:
dinfo: 99065856/56836096 max/curr mmap'd, 97883776/51663656 max/curr
So, peak dinfo memory decreases by about 36Mb, and final by 15Mb.
(for info, valgrind 3.9.0 uses
dinfo: 158941184/109666304 max/curr mmap'd, 156775944/107590656 max/curr
So, compared to 3.9.0, dinfo peak decreases by about 40%, and the final
memory is divided by more than 2).
The memory decrease is obtained by:
* using a dedup pool to store filename/dirname pair for the loctab source/line
information.
As typically, there is not a lot of such pairs, typically a UShort is
good enough to identify a fn/dn pair in a dedup pool.
To avoid losing memory due to alignment, the fndn indexes are stored
in a "parallel" array to the DiLoc loctab array, with entries having
1, or 2 or 4 bytes according to the nr of fn/dn pairs in the dedup pool.
See priv_storage.h comments for details.
(there was a extensible WordArray local implementation in readdwarf.c.
As with this change, we use an xarray, the local implementation was
removed).
* the memory needed for --read-inline-info is slightly decreased (-2Mb)
by removing the (unused) dirname from the DiInlLoc struct.
Handling dirname for inlined function caller implies to rework
the dwarf3 parser read_filename_table common to the var and inlinfo parser.
Waiting for this to be done, the dirname component is removed from DiInlLoc.
* the stabs reader (readstabs.c) is broken since 3.9.0.
For this change, the code has been updated to make it compile with the new
DiLoc/FnDn dedup pool. As the code is completely broken, a vg_assert(0)
has been put at the begin of the stabs reader.
* the pdb reader (readpdb.c) has been trivially updated and should still work.
It has not been tested (how do we test this ?).
A follow-up patch will be done to avoid doing too many calls to
ML_(addFnDn) : instead of having one call per ML_(addLineInfo), one
should have a single call done when reading the filename table.
This has also be tested in an outer/inner setup, to verify no
memory leak/bugs.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14158
Without this biasing, inline info is not correct for shared objects.
Updated test varinfo5 to use --read-inline-info=yes and added
an inline test case.
Note: the varinfo reader does not understand the inlining info, and
so variables in inlined functions are not properly described.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14146
(called very often, and has a fast/slow case)
This slightly improve the performance of reading the image.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14135
* Avoid printing the size of a null dedup pool
* Avoid warnings of 2 unused variables on some platforms
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14132
On a big executable, the trunk needs:
dinfo: 155844608/106737664 max/curr mmap'd 155572624/102276760 max/curr
With the patch, we have:
dinfo: 134873088/70389760 max/curr mmap'd 134607808/66717512 max/curr
So, peak dinfo memory decreases by 21Mb, and final by 36Mb.
The memory decrease is obtained by:
* using a dedup pool to store the machine dependent part (cfsi_m)
of the cfsi information as this information is highly duplicated.
For x86 and arm64, the duplication factor of cfsi machine dependent
part is very high (up to a factor 60).
For arm64, it is more like a factor 3.
A 'variable size' (1, 2 or 4 bytes) is automatically used to identify
the cfsi_m, if there is less than or more than 255/64K different cfsi_m.
* not storing explicitely the length of a range for which a cfsi_m
is to be used: in a large majority of the cases, ranges are
consecutive, and so the end of a range is just one byte before
the start of the next range.
So, we do not store the length of the ranges.
If there is a hole between 2 ranges, the hole is stored explicitely
as a range in which we have no cfsi_m information.
On x86 and amd64, we have quite some holes (something like one hole
every 7 cfsi). On arm64, we have very few holes (less than one hole
every 50 cfsi).
Even with the nr of holes on x86/amd64, it is more memory efficient
to store the holes rather than to store the length of each cfsi.
* Merging consecutive ranges that have the same cfsi_m info:
Many cfsi are "mergeable": there is no hole between 2 cfsi, and their
machine dependent part is identical
(I guess the unwind info needed by valgrind is subset of the full
unwind info, and so, the cfsi entries are not merged by the compiler,
but can be merged for simple unwind). Depending on the platform
(x86, amd64, arm64) and of the library/object file, we can have a
significant nr of mergeable entries.
The patch is not very small, but a lot is mechanical changes.
The patch has been compiled and tested on x86/amd64/ppc32/ppc64
(but ppc does not use cfsi so that just verifies it compiles).
It has been compiled on arm64, and "tested" by launching valgrind on
one executable.
It has not been compiled on s390 and mips.
With some luck, maybe it will compile on these platforms.
And if that uses the whole provision of luck for 2014, it might even work
on these platforms :).
If it does not compile, the fix should be straightforward.
Runtime problems might be more tricky (but arm64 "worked out of the box"
once x86/amd64 were ok).
This has also be tested in an outer/inner setup, to verify no memory leak/bugs.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14129
only decrease the size of a block, does not change the address,
does not need to alloc another block and copy the memory,
and (if big enough) makes the excess memory available for other
allocations.
VG_(arena_realloc_shrink) is then used for debuginfo storage.c
(replacing an allocation + copy).
Also use it in the dedup pool, to recuperate the unused
memory of the last pool.
This also allows to re-increase the string pool size to the original
3.9.0 value of 64Kb. All this slightly decrease the peak and in use
memory of dinfo.
VG_(arena_realloc_shrink) will also be used to implement (in another patch)
a dedup pool which "numbers" the allocated elements.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14122
The name is not necessarily found in the abstract origin, it can be
in a referred to specification.
If both a name and a DW_AT_specification is found in the abstract origin,
the name will have priority over the name of the specification.
(unclear if that can happen)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14076
the inlined info of a big executable.
On a slow pentium, reading the inline info now takes 5.5 seconds.
The optimisation consists in having per dw3 abbreviation a structure
allowing to skip efficiently the non interesting DIEs (i.e. the DIEs
the parse_inl_DIE is not interested in).
Mostly, the idea is to avoid calling the image abstraction, and replace
this by just advancing the cursor (i.e. addition rather than a bunch
of function calls to read the data).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14075
* add a trace_DIE function
* use it to trace a bad DIE
and to trace all DIEs that are (maybe) read
(due to the "avoid read twice" optimisation, the tracing was not
so easy to read anymore => add an explicit trace_DIE call at the beginning
of read_DIE)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14050
by a DIE parser
Instead of pre-reading the DIE, first let the parser(s) possibly
parse the DIE. Read (to skip) the DIE data if no parser has parsed it.
OTherwise, just jump to the end of the DIE as established by the parser
that has read the DIE.
This slightly improves the reading of inlined info.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14049
Wrong place for the assertion for the inlparser
+ move the "zero the parsers" out of the "if VG_(clo*)" conditions
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14044
of DIEs when one or more parsers will read them also)
+ add the name of the parser in the barf output.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14041
showing inlined function calls.
See 278972 valgrind stacktraces and suppression do not handle inlined function call debuginfo
Reading the inlined dwarf call info is activated using the new clo
--read-inline-info=yes
Default is currently no but an objective is to optimise the performance
and memory in order to possibly set it on by default.
(see below discussion about performances).
Basically, the patch provides the following pieces:
1. Implement a new dwarf3 reader that reads the inlined call info
2. Some performance improvements done for this new parser, and
on some common code between the new parser and the var info parser.
3. Use the parsed inlined info to produce stacktrace showing inlined calls
4. Use the parsed inlined info in the suppression matching and suppression generation
5. and of course, some reg tests
1. new dwarf3 reader:
---------------------
Two options were possible: add the reading of the inlined info
in the current var info dwarf reader, or add a 2nd reader.
The 2nd approach was preferred, for the following reasons:
The var info reader is slow, memory hungry and quite complex.
Having a separate parsing phase for the inlined information
is simpler/faster when just reading the inlined info.
Possibly, a single parser would be faster when using both
--read-var-info=yes and --read-inline-info=yes.
However, var-info being extremely memory/cpu hungry, it is unlikely
to be used often, and having a separate parsing for inlined info
does in any case make not much difference.
(--read-var-info=yes is also now less interesting thanks to commit
r13991, which provides a fast and low memory "reasonable" location
for an address).
The inlined info parser reads the dwarf info to make calls
to priv_storage.h ML_(addInlInfo).
2. performance optimisations
----------------------------
* the abbrev cache has been improved in revision r14035.
* The new parser skips the non interesting DIEs
(the var-info parser has no logic to skip uninteresting DIEs).
* Some other minor perf optimisation here and there.
In total now, on a big executable, 15 seconds CPU are needed to
create the inlined info (on my slow x86 pentium).
With regards to memory, the dinfo arena:
with inlined info: 172281856/121085952 max/curr mmap'd
without : 157892608/106721280 max/curr mmap'd,
So, basically, inlined information costs about 15Mb of memory for
my big executable (compared to first version of the patch, this is
already using less memory, thanks to the strpool deduppoolalloc.
The needed memory can probably be decreased somewhat more.
3. produce better stack traces
------------------------------
VG_(describe_IP) has a new argument InlIPCursor *iipc which allows
to describe inlined function calls by doing repetitive calls
to describe_IP. See pub_tool_debuginfo.h for a description.
4. suppression generation and matching
--------------------------------------
* suppression generation now also uses an InlIPCursor *iipc
to generate a line for each inlined fn call.
* suppression matching: to allow suppression matching to
match one IP to several function calls in a suppression entry,
the 'inputCompleter' object (that allows to lazily generate
function or object names for a stacktrace when matching
an error with a suppression) has been generalised a little bit
more to also lazily generate the input sequence.
VG_(generic_match) has been updated so as to be more generic
with respect to the input completer : when providing an
input completer, VG_(generic_match) does not need anymore
to produce/compute any input itself : this is all delegated
to the input completer.
5. various regtests
-------------------
to test stack traces with inlined calls, and suppressions
of (some of) these errors using inlined fn calls matching.
Work still to do:
-----------------
* improve parsing performance
* improve the memory overhead.
* handling the directory name for files of the inlined function calls is not yet done.
(probably implies to refactor some code)
* see if m_errormgr.c *offsets arrays cannot be managed via xarray
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14036
For each DIE, the dwarf3 reader must know which data elements to read.
These elements are described by an abbreviation.
Re-reading these abbreviations for each DIE is costly as
the location of the needed abbreviation is found by scanning the full
abbv section, which is very costly.
(A small cache of 32 abbv offsets in the abbv section somewhat decreases
the cost, but reading the abbvs is still a hot spot, in particular for
big debug informations).
This patch:
* adds an hash table of parsed abbreviations
* all abbreviations for a CU are read in one single scan of the abbv
section, when the CU header is read
So, with the patch, the di image is not accessed anymore for reading the abbvs
after the CU header parsing.
On a big executable, --read-var-info=yes user cpu changes from
trunk: 320 seconds
to
abbv cache: 270 seconds
This further improves on a previous (not committed) abbv cache that
was just caching up to 513 entries in the abbv pos cache and populating
the cache with an initial scan. The user cpu for this version was 285 seconds.
NB: this is some work in anticipation of a following patch that
will add reading dwarf3 inlined information, with the hope to make
this reading fast enough to activate it by default.
Note: on the examples I looked at, all abbreviations were numbered starting
from 1, with no holes. If that would always be the case, then one could use
an xarray of parsed abbreviations rather than an hash table. However,
I found nothing in the dwarf standard that guarantees that abbreviations
are numbered from 1. So, the hash table.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14035
It is possible that a debug info contains no string (and so strpool
is never allocated).
A protection to avoid accessing strpool was already necessary
in ML_(canonicaliseTables) :
if (di->strpool)
VG_(freezeDedupPA) (di->strpool);
So, if a similar debug info is released, we need the same protection
to avoid accessing a NULL strpool.
Detect by Julian on arm64, but not (at least easily) reproduced on amd64.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14033