At many places, we have:
VG_(fun(a,b,c))
instead of
VG_(fun)(a,b,c)
So, fix these cases, found using:
grep -n -i -e 'VG_([a-z][a-z0-9_]*[^a-z0-9_)]' *.c */*.c */*/*.c
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@15776
This implements the interception of all globally public allocation
functions by default. It works by adding a flag to the spec to say the
interception only applies to global functions. Which is set for the
somalloc spec. The librarypath to match is set to "*" unless the user
overrides it. Then each DiSym keeps track of whether the symbol is local
or global. For a spec which has isGlobal set only isGlobal symbols will
match.
Note that because of padding to keep the addresses in DiSym aligned the
addition of the extra bool isGlobal doesn't actually grow the struct.
The comments explain how the struct could be made more compact on 32bit
systems, but this isn't as easy on 64bit systems. So I didn't try to do
that in this patch.
For ELF symbols keeping track of which are global is trivial. For pdb I
had to guess and made only the "Public" symbols global. I don't know
how/if macho keeps track of global symbols or not. For now I just mark
all of them local (which just means things work as previously on platforms
that use machos, no non-system symbols are matches by default for somalloc
unless the user explicitly tells which library name to match).
Included are two testcases for shared libraries (wrapmalloc) and staticly
linked (wrapmallocstatic) malloc/free overrides that depend on the new
default. One existing testcase (new_override) was adjusted to explicitly
not use the new somalloc default because it depends on a user defined
new implementation that has side-effects and should explicitly not be
intercepted.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@15726
Since valgrind 3.9.0 the STABS support was already disabled completely.
But the code was still there being compiled and we were still searching
for stabs sections in binaries. Completely remove all sources, tests and
references. Add a note to coregrind/m_debuginfo/README.txt to mention
the old code can be found in the subversion repository.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14550
(used for ppc64 platforms) #ifdef-ed and accessed by macros
that becomes NOP on non ppc64 platforms.
This decreases the debuginfo memory by about 2.5 Mb on a big 32 bit application.
Note : doing that, some questions were encountered in the way
tocptr and local_ep have (or do not have) to be copied/maintained
in storage.c canonicaliseSymtab
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14273
to add PPC64 LE support. The other two patches can be found in Bugzillas
334384 and 334836.
POWER PC, add the functional Little Endian support, patch 2
The IBM POWER processor now supports both Big Endian and Little Endian.
The ABI for Little Endian also changes. Specifically, the function
descriptor is not used, the stack size changed, accessing the TOC
changed. Functions now have a local and a global entry point. Register
r2 contains the TOC for local calls and register r12 contains the TOC
for global calls. This patch makes the functional changes to the
Valgrind tool. The patch makes the changes needed for the
none/tests/ppc32 and none/tests/ppc64 Makefile.am. A number of the
ppc specific tests have Endian dependencies that are not fixed in
this patch. They are fixed in the next patch.
Per Julian's comments renamed coregrind/m_dispatch/dispatch-ppc64-linux.S
to coregrind/m_dispatch/dispatch-ppc64be-linux.S Created new file for LE
coregrind/m_dispatch/dispatch-ppc64le-linux.S. The same was done for
coregrind/m_syswrap/syscall-ppc-linux.S.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14239
to add PPC64 LE support. The other two patches can be found in Bugzillas
334834 and 334836. The commit does not have a VEX commit associated with it.
POWER PC, add initial Little Endian support
The IBM POWER processor now supports both Big Endian and Little Endian.
This patch renames the #defines with the name ppc64 to ppc64be for the BE
specific code. This patch adds the Little Endian #define ppc64le to the
Additionally, a few functions are renamed to remove BE from the name if the
function is used by BE and LE. Functions that are BE specific have BE put
in the name.
The goals of this patch is to make sure #defines, function names and
variables consistently use PPC64/ppc64 if it refers to BE and LE,
PPC64BE/ppc64be if it is specific to BE, PPC64LE/ppc64le if it is LE
specific. The patch does not break the code for PPC64 Big Endian.
The test files memcheck/tests/atomic_incs.c, tests/power_insn_available.c
and tests/power_insn_available.c are also updated to the new #define
definition for PPC64 BE.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14238
showing inlined function calls.
See 278972 valgrind stacktraces and suppression do not handle inlined function call debuginfo
Reading the inlined dwarf call info is activated using the new clo
--read-inline-info=yes
Default is currently no but an objective is to optimise the performance
and memory in order to possibly set it on by default.
(see below discussion about performances).
Basically, the patch provides the following pieces:
1. Implement a new dwarf3 reader that reads the inlined call info
2. Some performance improvements done for this new parser, and
on some common code between the new parser and the var info parser.
3. Use the parsed inlined info to produce stacktrace showing inlined calls
4. Use the parsed inlined info in the suppression matching and suppression generation
5. and of course, some reg tests
1. new dwarf3 reader:
---------------------
Two options were possible: add the reading of the inlined info
in the current var info dwarf reader, or add a 2nd reader.
The 2nd approach was preferred, for the following reasons:
The var info reader is slow, memory hungry and quite complex.
Having a separate parsing phase for the inlined information
is simpler/faster when just reading the inlined info.
Possibly, a single parser would be faster when using both
--read-var-info=yes and --read-inline-info=yes.
However, var-info being extremely memory/cpu hungry, it is unlikely
to be used often, and having a separate parsing for inlined info
does in any case make not much difference.
(--read-var-info=yes is also now less interesting thanks to commit
r13991, which provides a fast and low memory "reasonable" location
for an address).
The inlined info parser reads the dwarf info to make calls
to priv_storage.h ML_(addInlInfo).
2. performance optimisations
----------------------------
* the abbrev cache has been improved in revision r14035.
* The new parser skips the non interesting DIEs
(the var-info parser has no logic to skip uninteresting DIEs).
* Some other minor perf optimisation here and there.
In total now, on a big executable, 15 seconds CPU are needed to
create the inlined info (on my slow x86 pentium).
With regards to memory, the dinfo arena:
with inlined info: 172281856/121085952 max/curr mmap'd
without : 157892608/106721280 max/curr mmap'd,
So, basically, inlined information costs about 15Mb of memory for
my big executable (compared to first version of the patch, this is
already using less memory, thanks to the strpool deduppoolalloc.
The needed memory can probably be decreased somewhat more.
3. produce better stack traces
------------------------------
VG_(describe_IP) has a new argument InlIPCursor *iipc which allows
to describe inlined function calls by doing repetitive calls
to describe_IP. See pub_tool_debuginfo.h for a description.
4. suppression generation and matching
--------------------------------------
* suppression generation now also uses an InlIPCursor *iipc
to generate a line for each inlined fn call.
* suppression matching: to allow suppression matching to
match one IP to several function calls in a suppression entry,
the 'inputCompleter' object (that allows to lazily generate
function or object names for a stacktrace when matching
an error with a suppression) has been generalised a little bit
more to also lazily generate the input sequence.
VG_(generic_match) has been updated so as to be more generic
with respect to the input completer : when providing an
input completer, VG_(generic_match) does not need anymore
to produce/compute any input itself : this is all delegated
to the input completer.
5. various regtests
-------------------
to test stack traces with inlined calls, and suppressions
of (some of) these errors using inlined fn calls matching.
Work still to do:
-----------------
* improve parsing performance
* improve the memory overhead.
* handling the directory name for files of the inlined function calls is not yet done.
(probably implies to refactor some code)
* see if m_errormgr.c *offsets arrays cannot be managed via xarray
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14036
- Match the ordering of the non-tool-specific options in the usage message
with the order in the user manual. As a result, we now always print
--alignment and --trace-malloc in the core's usage messages, which saves
malloc-replacing tools from doing it themselves (and brings it in line
with options that only apply to error-collecting tools).
- Improved the presentation of the Vex options with --help-debug.
- Removed documentation of -d in the manual because it's a debugging-only flag.
- Documented --read-var-info in the manual. This fixes bug 201169.
- Renamed --auto-run-dsymutil as --dsymutil and documented it in the usage
message.
- Fixed an XML error in manual-core-adv.xml.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@10703
following improvements:
- Arch/OS/platform-specific files are now included/excluded via the
preprocessor, rather than via the build system. This is more consistent
(we use the pre-processor for small arch/OS/platform-specific chunks
within files) and makes the build system much simpler, as the sources for
all programs are the same on all platforms.
- Vast amounts of cut+paste Makefile.am code has been factored out. If a
new platform is implemented, you need to add 11 extra Makefile.am lines.
Previously it was over 100 lines.
- Vex has been autotoolised. Dependency checking now works in Vex (no more
incomplete builds). Parallel builds now also work. --with-vex no longer
works; it's little use and a pain to support. VEX/Makefile is still in
the Vex repository and gets overwritten at configure-time; it should
probably be renamed Makefile-gcc to avoid possible problems, such as
accidentally committing a generated Makefile. There's a bunch of hacky
copying to deal with the fact that autotools don't handle same-named files
in different directories. Julian plans to rename the files to avoid this
problem.
- Various small Makefile.am things have been made more standard automake
style, eg. the use of pkginclude/pkglib prefixes instead of rolling our
own.
- The existing five top-level Makefile.am include files have been
consolidated into three.
- Most Makefile.am files now are structured more clearly, with comment
headers separating sections, declarations relating to the same things next
to each other, better spacing and layout, etc.
- Removed the unused exp-ptrcheck/tests/x86 directory.
- Renamed some XML files.
- Factored out some duplicated dSYM handling code.
- Split auxprogs/ into auxprogs/ and mpi/, which allowed the resulting
Makefile.am files to be much more standard.
- Cleaned up m_coredump by merging a bunch of files that had been
overzealously separated.
The net result is 630 fewer lines of Makefile.am code, or 897 if you exclude
the added Makefile.vex.am, or 997 once the hacky file copying for Vex is
removed. And the build system is much simpler.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@10364
I tried using 'svn merge' to do the merge but it did a terrible job and
there were bazillions of conflicts. So instead I just took the diff between
the branch and trunk at r10155, applied the diff to the trunk, 'svn add'ed
the added files (no files needed to be 'svn remove'd) and committed.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@10156