to add PPC64 LE support. The other two patches can be found in Bugzillas
334384 and 334836.
POWER PC, add the functional Little Endian support, patch 2
The IBM POWER processor now supports both Big Endian and Little Endian.
The ABI for Little Endian also changes. Specifically, the function
descriptor is not used, the stack size changed, accessing the TOC
changed. Functions now have a local and a global entry point. Register
r2 contains the TOC for local calls and register r12 contains the TOC
for global calls. This patch makes the functional changes to the
Valgrind tool. The patch makes the changes needed for the
none/tests/ppc32 and none/tests/ppc64 Makefile.am. A number of the
ppc specific tests have Endian dependencies that are not fixed in
this patch. They are fixed in the next patch.
Per Julian's comments renamed coregrind/m_dispatch/dispatch-ppc64-linux.S
to coregrind/m_dispatch/dispatch-ppc64be-linux.S Created new file for LE
coregrind/m_dispatch/dispatch-ppc64le-linux.S. The same was done for
coregrind/m_syswrap/syscall-ppc-linux.S.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14239
to add PPC64 LE support. The other two patches can be found in Bugzillas
334834 and 334836. The commit does not have a VEX commit associated with it.
POWER PC, add initial Little Endian support
The IBM POWER processor now supports both Big Endian and Little Endian.
This patch renames the #defines with the name ppc64 to ppc64be for the BE
specific code. This patch adds the Little Endian #define ppc64le to the
Additionally, a few functions are renamed to remove BE from the name if the
function is used by BE and LE. Functions that are BE specific have BE put
in the name.
The goals of this patch is to make sure #defines, function names and
variables consistently use PPC64/ppc64 if it refers to BE and LE,
PPC64BE/ppc64be if it is specific to BE, PPC64LE/ppc64le if it is LE
specific. The patch does not break the code for PPC64 Big Endian.
The test files memcheck/tests/atomic_incs.c, tests/power_insn_available.c
and tests/power_insn_available.c are also updated to the new #define
definition for PPC64 BE.
Signed-off-by: Carl Love <carll@us.ibm.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14238
rather than throwing to the default case. This stops Memcheck
reporting false positives for the NETLINK case.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14237
Some syscall verification code is allocating memory to generate
the string used to build an error, e.g. syswrap-generic.c verifying fields of
e.g socket addresses (pre_mem_read_sockaddr) or sendmsg/recvmsg args
(msghdr_foreachfield)
The allocated pointer was copied in the error created by VG_(maybe_record_error).
This was wrong for 2 reasons:
1. If the error is a new error, it is stored in a list of errors,
but the string memory was freed by pre_mem_read_sockaddr, msghdr_foreachfield, ...
This causes a dangling reference. Was at least visible when giving -v, which
re-prints all errors at the end of execution.
Probably this could have some consequences during run while generating new errors,
and comparing for equality with a recorded error having a dangling reference.
2. the same allocated string is re-used for each piece/field of the verified struct.
The code in mc_errors.c that checks that 2 errors are identical was then wrongly
considereing that 2 successive errors for 2 different fields for the same syscall
arg are identical, just because the error string happened to be produced at
the same address.
(it is believed that initially, the error string was assumed to be a static
string, which is not the case anymore, causing the above 2 problems).
Changes:
* The fix consists in duplicating in m_errormgr.c the given error string when
the error is recorded. In other words, the error string is now duplicated similarly
to the (optional) extra component of the error.
* memcheck/tests/linux/rfcomm.c test modified as now an error is reported
for each uninit field.
* socketaddr unknown family is also better reported (using sa_data field name,
rather than an empty field name.
* minor reformatting in m_errormgr.c, to be below 80 characters.
Some notes:
1. the string is only duplicated if the error is recorded
(ie. printed or the first time an error matches a suppression).
The string is not duplicated for duplicated errors or following errors
matching the first (suppressed) error.
The string is also not duplicated for 'unique errors' (that are printed
and then not recorded).
2. duplicating the string for each recorded error is not deemed to
use a lot of memory:
* error strings are usually NULL or short (often 10 bytes or so).
* we expect no program has a huge number of errors
If ever this string duplicate would be significant, having a DedupPoolAlloc
in m_errormgr.c for these strings would reduce this memory (as we expect to
have very few different strings, even with millions of errors).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14214
and stack address description.
* A race condition on an allocated block shows the stacktrace, but
does not show the thread # that allocated the block.
This patch adds the output of the thread # that allocated the block.
* The patch also fixes the confusion that might appear between
the core threadid and the helgrind thread nr in Stack address description:
A printed stack addrinfo was containing a thread id, while all other helgrind
messages are using (supposed to use) an 'helgrind thread #' which
is used in the thread announcement.
Basically, the idea is to let a tool set a "tool specific thread nr'
in an addrinfo.
The pretty printing of the addrinfo is then by preference showing this
thread nr (if it was set, i.e. different of 0).
Currently, only helgrind uses this addrinfo tnr.
Note: in xml mode, the output is matching the protocol description.
I.e., GUI should not be impacted by this change, if they properly implement
the xml protocol.
* Also, make the output produced by m_addrinfo consistent:
The message 'block was alloc'd at' is changed to be like all other
output : one character indent, and starting with an uppercase
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14175
The dedup pool can now be used to allocate elements and identify
them with a number rather than an address.
This new feature is not used (yet) but is intended to be used to
decrease the memory needed to store the CFSI information.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14123
only decrease the size of a block, does not change the address,
does not need to alloc another block and copy the memory,
and (if big enough) makes the excess memory available for other
allocations.
VG_(arena_realloc_shrink) is then used for debuginfo storage.c
(replacing an allocation + copy).
Also use it in the dedup pool, to recuperate the unused
memory of the last pool.
This also allows to re-increase the string pool size to the original
3.9.0 value of 64Kb. All this slightly decrease the peak and in use
memory of dinfo.
VG_(arena_realloc_shrink) will also be used to implement (in another patch)
a dedup pool which "numbers" the allocated elements.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14122
showing inlined function calls.
See 278972 valgrind stacktraces and suppression do not handle inlined function call debuginfo
Reading the inlined dwarf call info is activated using the new clo
--read-inline-info=yes
Default is currently no but an objective is to optimise the performance
and memory in order to possibly set it on by default.
(see below discussion about performances).
Basically, the patch provides the following pieces:
1. Implement a new dwarf3 reader that reads the inlined call info
2. Some performance improvements done for this new parser, and
on some common code between the new parser and the var info parser.
3. Use the parsed inlined info to produce stacktrace showing inlined calls
4. Use the parsed inlined info in the suppression matching and suppression generation
5. and of course, some reg tests
1. new dwarf3 reader:
---------------------
Two options were possible: add the reading of the inlined info
in the current var info dwarf reader, or add a 2nd reader.
The 2nd approach was preferred, for the following reasons:
The var info reader is slow, memory hungry and quite complex.
Having a separate parsing phase for the inlined information
is simpler/faster when just reading the inlined info.
Possibly, a single parser would be faster when using both
--read-var-info=yes and --read-inline-info=yes.
However, var-info being extremely memory/cpu hungry, it is unlikely
to be used often, and having a separate parsing for inlined info
does in any case make not much difference.
(--read-var-info=yes is also now less interesting thanks to commit
r13991, which provides a fast and low memory "reasonable" location
for an address).
The inlined info parser reads the dwarf info to make calls
to priv_storage.h ML_(addInlInfo).
2. performance optimisations
----------------------------
* the abbrev cache has been improved in revision r14035.
* The new parser skips the non interesting DIEs
(the var-info parser has no logic to skip uninteresting DIEs).
* Some other minor perf optimisation here and there.
In total now, on a big executable, 15 seconds CPU are needed to
create the inlined info (on my slow x86 pentium).
With regards to memory, the dinfo arena:
with inlined info: 172281856/121085952 max/curr mmap'd
without : 157892608/106721280 max/curr mmap'd,
So, basically, inlined information costs about 15Mb of memory for
my big executable (compared to first version of the patch, this is
already using less memory, thanks to the strpool deduppoolalloc.
The needed memory can probably be decreased somewhat more.
3. produce better stack traces
------------------------------
VG_(describe_IP) has a new argument InlIPCursor *iipc which allows
to describe inlined function calls by doing repetitive calls
to describe_IP. See pub_tool_debuginfo.h for a description.
4. suppression generation and matching
--------------------------------------
* suppression generation now also uses an InlIPCursor *iipc
to generate a line for each inlined fn call.
* suppression matching: to allow suppression matching to
match one IP to several function calls in a suppression entry,
the 'inputCompleter' object (that allows to lazily generate
function or object names for a stacktrace when matching
an error with a suppression) has been generalised a little bit
more to also lazily generate the input sequence.
VG_(generic_match) has been updated so as to be more generic
with respect to the input completer : when providing an
input completer, VG_(generic_match) does not need anymore
to produce/compute any input itself : this is all delegated
to the input completer.
5. various regtests
-------------------
to test stack traces with inlined calls, and suppressions
of (some of) these errors using inlined fn calls matching.
Work still to do:
-----------------
* improve parsing performance
* improve the memory overhead.
* handling the directory name for files of the inlined function calls is not yet done.
(probably implies to refactor some code)
* see if m_errormgr.c *offsets arrays cannot be managed via xarray
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14036
include/pub_tool_deduppoolalloc.h
coregrind/pub_core_deduppoolalloc.h
coregrind/m_deduppoolalloc.c
and uses it (currently only) for the strings in m_debuginfo/storage.c
The idea is that such ddup pool allocator will also be used for other
highly duplicated information (e.g. the DiCFSI information), where
significant gains can also be achieved.
The dedup pool for strings also decreases significantly the memory
needed by the read inline information (patch still to be committed,
see bug 278972).
When testing with a big executable (tacot_process),
this reduces the size of the dinfo arena from
trunk: 158941184/109760512 max/curr mmap'd, 156775944/107882728 max/curr,
to
ddup: 157892608/106614784 max/curr mmap'd, 156362160/101414712 max/curr
(so 3Mb less mmap-ed once debug info is read, 1Mb less mmap-ed in peak,
6Mb less allocated once debug info is read).
This is all gained due to the string which changes from:
trunk: 17,434,704 in 266: di.storage.addStr.1
to
ddup: 10,966,608 in 750: di.storage.addStr.1
(6.5Mb less memory used by strings)
The gain in mmap-ed memory is smaller due to fragmentation.
Probably one could decrease the fragmentation by using bigger
size for the dedup pool, but then we would lose memory on the last
allocated pool (and for small libraries, we often do not use much
of a big pool block).
Solution might be to increase the pool size but have a "shrink_block"
operation. To be looked at in the future.
In terms of performance, startup of a big executable (on an old pentium)
is not influenced significantly (something like 0.1 seconds on 15 seconds
startup for a big executable, on a slow pentium).
The dedup pool uses a hash table. The hash function used currently
is the VG_(adler32) check sum. It is reported (and visible also here)
that this checksum is not a very good hash function (many collisions).
To have statistics about collisions, use --stats -v -v -v
As an example of the collisions, on the strings in debug info of memcheck tool on x86,
one obtain:
--4789-- dedupPA:di.storage.addStr.1 9983 allocs (8174 uniq) 11 pools (4820 bytes free in last pool)
--4789-- nr occurences of chains of len N, N-plicated keys, N-plicated elts
--4789-- N: 0 : nr chain 6975, nr keys 0, nr elts 0
--4789-- N: 1 : nr chain 3670, nr keys 6410, nr elts 8174
--4789-- N: 2 : nr chain 1070, nr keys 226, nr elts 0
--4789-- N: 3 : nr chain 304, nr keys 100, nr elts 0
--4789-- N: 4 : nr chain 104, nr keys 84, nr elts 0
--4789-- N: 5 : nr chain 72, nr keys 42, nr elts 0
--4789-- N: 6 : nr chain 44, nr keys 34, nr elts 0
--4789-- N: 7 : nr chain 18, nr keys 13, nr elts 0
--4789-- N: 8 : nr chain 17, nr keys 8, nr elts 0
--4789-- N: 9 : nr chain 4, nr keys 6, nr elts 0
--4789-- N:10 : nr chain 9, nr keys 4, nr elts 0
--4789-- N:11 : nr chain 1, nr keys 0, nr elts 0
--4789-- N:13 : nr chain 1, nr keys 1, nr elts 0
--4789-- total nr of unique chains: 12289, keys 6928, elts 8174
which shows that on 8174 different strings, we have only 6410 strings which have
a unique hash value. As other examples, N:13 line shows we have 13 strings
mapping to the same key. N:14 line shows we have 4 groups of 10 strings mapping to the
same key, etc.
So, adler32 is definitely a bad hash function.
Trials have been done with another hash function, giving a much lower
collision rate. So, a better (but still fast) hash function would probably
be beneficial. To be looked at ...
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@14029
--read-var-info=yes is very memory and cpu intensive.
This patch ensures that even witout --read-var-info=yes that
the frame where the address point is reported in the address
description.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13991
This reverts valgrind svn r13975. This was a work in progress, still being
discussed in bug #334802. It should not yet been pushed.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13978
Add an explanation of why an option was bad to fmsg_bad_option calls that
were just using "" as argument. Fixes bug #334802.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13975
that mingw64 also defines __MINGW32__, which led to the 32-bit definitions
being used in the 64-bit case. n-i-bz. (Bernhard.Loos@ruecker.de)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13971
of memcheck and helgrind in a common module:
pub_tool_addrinfo.h pub_core_addrinfo.h m_addrinfo.c
At the same time, the factorised code is made usable by other
tools also (and is used by the gdbserver command 'v.info location'
which replaces the helgrind 'describe addr' introduced 1 week ago
and which is now callable by all tools).
The new address description code can describe more addresses
(e.g. for memcheck, if the block is not on the free list anymore,
but is in an arena free list, this will also be described).
Similarly, helgrind address description can now describe more addresses
when --read-var-info=no is given (e.g. global symbols are
described, or addresses on the stack are described as
being on the stack, freed blocks in the arena free list are
described, ...).
See e.g. the change in helgrind/tests/annotate_rwlock.stderr.exp
or locked_vs_unlocked2.stderr.exp
The patch touches many files, but is basically a lot of improvements
in helgrind output files.
The code changes are mostly refactorisation of existing code.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13965
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
CC: Ian Campbell <Ian.Campbell@citrix.com>
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13927
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
CC: Ian Campbell <Ian.Campbell@citrix.com>
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13926
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
CC: Ian Campbell <Ian.Campbell@citrix.com>
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13925
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
CC: Ian Campbell <Ian.Campbell@citrix.com>
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13924
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
CC: Ian Campbell <Ian.Campbell@citrix.com>
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13923
* add a function Bool VG_(parse_enum_set) in pub_tool_libcbase.h/m_libcbase.c
(close to Bool VG_(parse_Addr)
* Implement Bool MC_(parse_leak_heuristics) and MC_(parse_leak_kinds)
as a call to VG_(parse_enum_set)
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13898
making it easier to understand the memory and/or oom situation.
No functional (user level) change.
* For --profile-heap=yes, sort the cost centers by decreasing size,
so that the most relevant cost centers are closed to the arena
total.
* factorise duplicated code calling a series of print stat functions
* VG_(show_sched_status)
optionally show the host stacktrace
the amount of valgrind stack used by each thread
the exited threads
* various functions: update to add VG_(show_sched_status) new
args, keeping the same info production as before.
* In case of out of memory situation detected by m_mallocfree.c,
reports more information:
valgrind and tool stats
scheduler status (full information)
* gdbserver v.info scheduler :
show full information.
The oom behaviour/reporting was tested using a small
program causing an OOM, and having several threads
(some terminated, some still active).
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13897
VALGRIND_DISABLE_ADDR_ERROR_REPORTING_IN_RANGE and
VALGRIND_ENABLE_ADDR_ERROR_REPORTING_IN_RANGE
and supporting machinery for managing whole-address-space sparse
mappings. n-i-bz. In support of
https://bugzilla.mozilla.org/show_bug.cgi?id=970643
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13884
* implement VALGRIND_ALIGN_STACK, VALGRIND_RESTORE_STACK
* preserve r30(LR) across the hidden call, so as to avoid segfaulting later
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13859
VKI_ENOSYS and VKI_EOVERFLOW don't have the same generic values for mips32/64.
We need to define these values for every Linux arch.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13852
Only check struct sigevent actually used by the kernel. If SIGEV_THREAD_ID
is set check sigev_notify_thread_id, otherwise don't.
git-svn-id: svn://svn.valgrind.org/valgrind/trunk@13835