When generating HTML it is useful if every element that can be referenced
has a stable id. If it doesn't a random one is generated which makes it
harder to link to parts of the manual on the website. It also generates
spurious diffs. Explicitly add an id tag for the sect2 and sect3 elements
in dh-manual, a unique id for each legalnotice element and for each
FAQ question and answer.
Make valid-manual and valid-manpages real, separate make targets.
This means they can be run in parallel and they will only be run
once when doing make check, unless one of the manual and manpages
files has been touched.
manpages-index.xml is just to easily get at each individual man page
with xsltproc. It wasn't a complete docbookx xml file. Now that it is
we can validate it with xmllint. It doesn't fully validate, but we
are close.
This makes the rule for xmllint easier since it doesn't need to
override the DTD to validate against. It also helps with other tools
tryinf to process the docbookx xml files.
It only ever worked on x86 and amd64, and even on those it had a high false
positive rate and was slow. Everything it does, ASan can do faster, better,
and on more architectures. So there's no reason to keep this tool any more.
The s390x register usage callback marks the target register of a
conditional move as HRmWrite only. It fails to mention the fact that the
target register is also an input to the insn (unless the condition is
"never" or "always").
This was discovered while investigating "grail" failures on s390x and
fixes the majority of them.
Add VEX support for the s390x "compare and signal" instructions KEBR,
KDBR, KXBR, KEB, and KDB. For now, let them behave exactly like their
non-signalling counterparts. Enhance the bfp-4 test case to cover these
instructions as well. Update the list of supported instructions in
s390-opcodes.csv. Add a disclaimer to README.s390, explaining that FP
signalling is not handled accurately on s390x at the moment.
Some lines in s390-opcodes.csv contain entries that look like this:
...,"arch12"implemented",...
They are probably introduced by some cut-and-paste error. This is fixed.
* removes --vex-guest-chase-cond=no|yes. This was never used in practice.
* rename --vex-guest-chase-thresh=<0..99> to --vex-guest-chase=no|yes. In
otherwords, downgrade it from a numeric flag to a boolean one, that can
simply disable all chasing if required. (Some tools, notably Callgrind,
force-disable block chasing, so this functionality at least needs to be
retained).
This patch changes the option parsing framework to allow a set of
core or tool (currently only memcheck) options to be changed dynamically.
Here is a summary of the new functionality (extracted from NEWS):
* It is now possible to dynamically change the value of many command
line options while your program (or its children) are running under
Valgrind.
To have the list of dynamically changeable options, run
valgrind --help-dyn-options
You can change the options from the shell by using vgdb to launch
the monitor command "v.clo <clo option>...".
The same monitor command can be used from a gdb connected
to the valgrind gdbserver.
Your program can also change the dynamically changeable options using
the client request VALGRIND_CLO_CHANGE(option).
Here is a brief description of the code changes.
* the command line options parsing macros are now checking a 'parsing' mode
to decide if the given option must be handled or not.
(more about the parsing mode below).
* the 'main' command option parsing code has been split in a function
'process_option' that can be called now by:
- early_process_cmd_line_options
(looping over args, calling process_option in mode "Early")
- main_process_cmd_line_options
(looping over args, calling process_option in mode "Processing")
- the new function VG_(process_dynamic_option) called from
gdbserver or from VALGRIND_CLO_CHANGE (calling
process_option in mode "Dynamic" or "Help")
* So, now, during startup, process_option is called twice for each arg:
- once during Early phase
- once during normal Processing
Then process_option can then be called again during execution.
So, the parsing mode is defined so that the option parsing code
behaves differently (e.g. allows or not to handle the option)
depending on the mode.
// Command line option parsing happens in the following modes:
// cloE : Early processing, used by coregrind m_main.c to parse the
// command line options that must be handled early on.
// cloP : Processing, used by coregrind and tools during startup, when
// doing command line options Processing.
// clodD : Dynamic, used to dynamically change options after startup.
// A subset of the command line options can be changed dynamically
// after startup.
// cloH : Help, special mode to produce the list of dynamically changeable
// options for --help-dyn-options.
typedef
enum {
cloE = 1,
cloP = 2,
cloD = 4,
cloH = 8
} Clo_Mode;
The option parsing macros in pub_tool_options.h have now all a new variant
*_CLOM with the mode(s) in which the given option is accepted.
The old variant is kept and calls the new variant with mode cloP.
The function VG_(check_clom) in the macro compares the current mode
with the modes allowed for the option, and returns True if qq_arg
should be further processed.
For example:
// String argument, eg. --foo=yes or --foo=no
(VG_(check_clom) \
(qq_mode, qq_arg, qq_option, \
VG_STREQN(VG_(strlen)(qq_option)+1, qq_arg, qq_option"=")) && \
({const HChar* val = &(qq_arg)[ VG_(strlen)(qq_option)+1 ]; \
if VG_STREQ(val, "yes") (qq_var) = True; \
else if VG_STREQ(val, "no") (qq_var) = False; \
else VG_(fmsg_bad_option)(qq_arg, "Invalid boolean value '%s'" \
" (should be 'yes' or 'no')\n", val); \
True; }))
VG_BOOL_CLOM(cloP, qq_arg, qq_option, qq_var)
To make an option dynamically excutable, it is typically enough to replace
VG_BOOL_CLO(...)
by
VG_BOOL_CLOM(cloPD, ...)
For example:
- else if VG_BOOL_CLO(arg, "--show-possibly-lost", tmp_show) {
+ else if VG_BOOL_CLOM(cloPD, arg, "--show-possibly-lost", tmp_show) {
cloPD means the option value is set/changed during the main command
Processing (P) and Dynamically during execution (D).
Note that the 'body/further processing' of a command is only executed when
the option is recognised and the current parsing mode is ok for this option.
(from bug 404406 comment 0):
Valgrind on s390x currently lacks support for the miscellaneous
instruction extensions facility 2.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Fix false positives when invoking s390-check-opcodes.pl. Also clean up
some code formatting issues in that script. Add the instructions TPEI and
IRBM to guest_s390_toIR.c and s390-opcodes.csv, so they are not longer
warned about.
Sync VEX/LICENSE.GPL with top-level COPYING file. We used 3 different
addresses for writing to the FSF to receive a copy of the GPL. Replace
all different variants with an URL <http://www.gnu.org/licenses/>.
The following files might still have some slightly different (L)GPL
copyright notice because they were derived from other programs:
- files under coregrind/m_demangle which come from libiberty:
cplus-dem.c, d-demangle.c, demangle.h, rust-demangle.c,
safe-ctype.c and safe-ctype.h
- coregrind/m_demangle/dyn-string.[hc] derived from GCC.
- coregrind/m_demangle/ansidecl.h derived from glibc.
- VEX files for FMA detived from glibc:
host_generic_maddf.h and host_generic_maddf.c
- files under coregrin/m_debuginfo derived from LZO:
lzoconf.h, lzodefs.h, minilzo-inl.c and minilzo.h
- files under coregrind/m_gdbserver detived from GDB:
gdb/signals.h, inferiors.c, regcache.c, regcache.h,
regdef.h, remote-utils.c, server.c, server.h, signals.c,
target.c, target.h and utils.c
Plus the following test files:
- none/tests/ppc32/testVMX.c derived from testVMX.
- ppc tests derived from QEMU: jm-insns.c, ppc64_helpers.h
and test_isa_3_0.c
- tests derived from bzip2 (with embedded GPL text in code):
hackedbz2.c, origin5-bz2.c, varinfo6.c
- tests detived from glibc: str_tester.c, pth_atfork1.c
- test detived from GCC libgomp: tc17_sembar.c
- performance tests derived from bzip2 or tinycc (with embedded GPL
text in code): bz2.c, test_input_for_tinycc.c and tinycc.c
The syntax address[length] can be used in all the gdbserer monitor
commands that need an address and optional length argument.
This commit also fixes an error message, and removes trailing whitespaces
in m_gdbserver.c
This commit thoroughly overhauls DHAT, moving it out of the
"experimental" ghetto. It makes moderate changes to DHAT itself,
including dumping profiling data to a JSON format output file. It also
implements a new data viewer (as a web app, in dhat/dh_view.html).
The main benefits over the old DHAT are as follows.
- The separation of data collection and presentation means you can run a
program once under DHAT and then sort the data in various ways. Also,
full data is in the output file, and the viewer chooses what to omit.
- The data can be sorted in more ways than previously. Some of these
sorts involve useful filters such as "short-lived" and "zero reads or
zero writes".
- The tree structure view avoids the need to choose stack trace depth.
This avoids both the problem of not enough depth (when records that
should be distinct are combined, and may not contain enough
information to be actionable) and the problem of too much depth (when
records that should be combined are separated, making them seem less
important than they really are).
- Byte and block measures are shown with a percentage relative to the
global count, which helps gauge relative significance of different
parts of the profile.
- Byte and blocks measures are also shown with an allocation rate
(bytes and blocks per million instructions), which enables comparisons
across multiple profiles, even if those profiles represent different
workloads.
- Both global and per-node measurements are taken at the global heap
peak ("At t-gmax"), which gives Massif-like insight into the point of
peak memory use.
- The final/liftimes stats are a bit more useful than the old deaths
stats. (E.g. the old deaths stats didn't take into account lifetimes
of unfreed blocks.)
- The handling of realloc() has changed. The sequence `p = malloc(100);
realloc(p, 200);` now increases the total block count by 2 and the
total byte count by 300. Previously it increased them by 1 and 200.
The new handling is a more operational view that better reflects the
effect of allocations on performance. It makes a significant
difference in the results, giving paths involving reallocation (e.g.
repeated pushing to a growing vector) more prominence.
Other things of note:
- There is now testing, both regression tests that run within the
standard test suite, and viewer-specific tests that cannot run within
the standard test suite. The latter are run by loading
dh_view.html?test=1 in a web browser.
- The commit puts all tool lists in Makefiles (and similar files) in the
following consistent order: memcheck, cachegrind, callgrind, helgrind,
drd, massif, dhat, lackey, none; exp-sgcheck, exp-bbv.
- A lot of fields in dh_main.c have been given more descriptive names.
Those names now match those used in dh_view.js.
Add test cases for the z13 vector FP support. Bring s390-opcodes.csv
up-to-date, reflecting that the z13 vector instructions are now supported.
Also remove the non-support disclaimer for the vector facility from
README.s390.
The patch was contributed by Vadim Barkov, with some clean-up and minor
adjustments by Andreas Arnez.
Author: Nicholas Nethercote <nnethercote@mozilla.com>
Use inlined frames in Massif XTree output.
This makes Massif's output much easier to follow.
The commit also removes a -1 used on all Massif stack frame addresses.
There was a big comment questioning the presence of that -1, and with it
gone the addresses now match those produced by DHAT.