PPC64, Valgrind with GDB does not display 64-bit and 128-bit registers

correctly

1)  Fix Endianess issue that was missed in the BE to LE port.  GDB was
    not displaying the contents of the 64-bit and 128-bit registers
    correctly due to an Endianess issue.

2)  Fix displaying the shadow registers for the 64-bit and 128-bit
    registers.

Bugzilla 360008 was opened for this issue.

git-svn-id: svn://svn.valgrind.org/valgrind/trunk@15864
This commit is contained in:
Carl Love 2016-04-21 18:21:26 +00:00
parent eb743789cd
commit a30916183c
12 changed files with 292 additions and 78 deletions

View File

@ -605,12 +605,17 @@ GDBSERVER_XML_FILES = \
m_gdbserver/power64-core-valgrind-s1.xml \
m_gdbserver/power64-core-valgrind-s2.xml \
m_gdbserver/power64-core.xml \
m_gdbserver/power64-core2-valgrind-s1.xml \
m_gdbserver/power64-core2-valgrind-s2.xml \
m_gdbserver/power64-linux-valgrind-s1.xml \
m_gdbserver/power64-linux-valgrind-s2.xml \
m_gdbserver/power64-linux.xml \
m_gdbserver/power-altivec-valgrind-s1.xml \
m_gdbserver/power-altivec-valgrind-s2.xml \
m_gdbserver/power-altivec.xml \
m_gdbserver/power-vsx-valgrind-s1.xml \
m_gdbserver/power-vsx-valgrind-s2.xml \
m_gdbserver/power-vsx.xml \
m_gdbserver/power-core-valgrind-s1.xml \
m_gdbserver/power-core-valgrind-s2.xml \
m_gdbserver/power-core.xml \

View File

@ -19,7 +19,7 @@
<field name="v16_int8" type="v16i8"/>
</union>
<reg name="vr0" bitsize="128" type="vec128"/>
<reg name="vr0" bitsize="128" type="vec128" regnum="73"/>
<reg name="vr1" bitsize="128" type="vec128"/>
<reg name="vr2" bitsize="128" type="vec128"/>
<reg name="vr3" bitsize="128" type="vec128"/>

View File

@ -7,7 +7,7 @@
<!DOCTYPE feature SYSTEM "gdb-target.dtd">
<feature name="org.gnu.gdb.power.fpu-valgrind-s1">
<reg name="f0s1" bitsize="64" type="uint64" regnum="32"/>
<reg name="f0s1" bitsize="64" type="uint64"/>
<reg name="f1s1" bitsize="64" type="uint64"/>
<reg name="f2s1" bitsize="64" type="uint64"/>
<reg name="f3s1" bitsize="64" type="uint64"/>
@ -40,5 +40,5 @@
<reg name="f30s1" bitsize="64" type="uint64"/>
<reg name="f31s1" bitsize="64" type="uint64"/>
<reg name="fpscrs1" bitsize="32" group="float" regnum="70"/>
<reg name="fpscrs1" bitsize="32" group="float"/>
</feature>

View File

@ -7,7 +7,7 @@
<!DOCTYPE feature SYSTEM "gdb-target.dtd">
<feature name="org.gnu.gdb.power.fpu-valgrind-s2">
<reg name="f0s2" bitsize="64" type="uint64" regnum="32"/>
<reg name="f0s2" bitsize="64" type="uint64"/>
<reg name="f1s2" bitsize="64" type="uint64"/>
<reg name="f2s2" bitsize="64" type="uint64"/>
<reg name="f3s2" bitsize="64" type="uint64"/>
@ -40,5 +40,5 @@
<reg name="f30s2" bitsize="64" type="uint64"/>
<reg name="f31s2" bitsize="64" type="uint64"/>
<reg name="fpscrs2" bitsize="32" group="float" regnum="70"/>
<reg name="fpscrs2" bitsize="32" group="float"/>
</feature>

View File

@ -40,10 +40,29 @@
<reg name="r30s1" bitsize="64" type="uint64"/>
<reg name="r31s1" bitsize="64" type="uint64"/>
<reg name="pcs1" bitsize="64" type="code_ptr" regnum="64"/>
<!-- When printing the non-shadow register names/contents, GDB prints the
GPRs followed by the floating point registers then the pc, msr, ...
registers. If the shadow GPRs and shadow pc/msr/cr... register
definitions are all in this file, as is done with the non-shadow register
definitions, the shadow register name print order changes to GPRs,
followed by pc/msr/cr... then the floating point registers. Note, the
contents of the shadow registers still print in this same order as the
non-shadow registers values resulting in the shadow register names and
shadow register values not correctly aligning.
In order to get, the shadow register names to print in the same order
as the non-shadow register and correctly align with their contents,
the following register definitions were moved to the file
power64-core2-valgrind-s1.xml. The new file is included after the shadow
floating point XML definition file. By doing this, we get GDB to print
the shadow register names in the same order as the non-shadow register
names and thus correctly align with the order that the shadow register
contents are printed. -->
<!-- <reg name="pcs1" bitsize="64" type="code_ptr"/>
<reg name="msrs1" bitsize="64" type="uint64"/>
<reg name="crs1" bitsize="32" type="uint32"/>
<reg name="lrs1" bitsize="64" type="code_ptr"/>
<reg name="ctrs1" bitsize="64" type="uint64"/>
<reg name="xers1" bitsize="32" type="uint32"/>
<reg name="xers1" bitsize="32" type="uint32"/> -->
</feature>

View File

@ -40,10 +40,29 @@
<reg name="r30s2" bitsize="64" type="uint64"/>
<reg name="r31s2" bitsize="64" type="uint64"/>
<reg name="pcs2" bitsize="64" type="code_ptr" regnum="64"/>
<!-- When printing the non-shadow register names/contents, GDB prints the
GPRs followed by the floating point registers then the pc, msr, ...
registers. If the shadow GPRs and shadow pc/msr/cr... register
definitions are all in this file, as is done with the non-shadow register
definitions, the shadow register name print order changes to GPRs,
followed by pc/msr/cr... then the floating point registers. Note, the
contents of the shadow registers still print in this same order as the
non-shadow registers values resulting in the shadow register names and
shadow register values not correctly aligning.
In order to get, the shadow register names to print in the same order
as the non-shadow register and correctly align with their contents,
the following register definitions were moved to the file
power64-core2-valgrind-s2.xml. The new file is included after the shadow
floating point XML definition file. By doing this, we get GDB to print
the shadow register names in the same order as the non-shadow register
names and thus correctly align with the order that the shadow register
contents are printed. -->
<!-- <reg name="pcs2" bitsize="64" type="code_ptr"/>
<reg name="msrs2" bitsize="64" type="uint64"/>
<reg name="crs2" bitsize="32" type="uint32"/>
<reg name="lrs2" bitsize="64" type="code_ptr"/>
<reg name="ctrs2" bitsize="64" type="uint64"/>
<reg name="xers2" bitsize="32" type="uint32"/>
<reg name="xers2" bitsize="32" type="uint32"/> -->
</feature>

View File

@ -40,6 +40,13 @@
<reg name="r30" bitsize="64" type="uint64"/>
<reg name="r31" bitsize="64" type="uint64"/>
<!-- Note, the following register definitions must be in this file by
the "standard target features" for this processor. GDB will reject
this file description if the following register definitions are
not in this file. Hence, they can't be moved to power64-core2.xml
for consistency with what was done for the shadow register definitions
to get the shadow register print order to match the print order of
the HW registers -->
<reg name="pc" bitsize="64" type="code_ptr" regnum="64"/>
<reg name="msr" bitsize="64" type="uint64"/>
<reg name="cr" bitsize="32" type="uint32"/>

View File

@ -7,6 +7,6 @@
<!DOCTYPE feature SYSTEM "gdb-target.dtd">
<feature name="org.gnu.gdb.power.linux-valgrind-s1">
<reg name="orig_r3s1" bitsize="64" regnum="71"/>
<reg name="orig_r3s1" bitsize="64"/>
<reg name="traps1" bitsize="64"/>
</feature>

View File

@ -7,6 +7,6 @@
<!DOCTYPE feature SYSTEM "gdb-target.dtd">
<feature name="org.gnu.gdb.power.linux-valgrind-s2">
<reg name="orig_r3s2" bitsize="64" regnum="71"/>
<reg name="orig_r3s2" bitsize="64"/>
<reg name="traps2" bitsize="64"/>
</feature>

View File

@ -16,12 +16,17 @@
<xi:include href="power-fpu.xml"/>
<xi:include href="power64-linux.xml"/>
<xi:include href="power-altivec.xml"/>
<xi:include href="power-vsx.xml"/>
<xi:include href="power64-core-valgrind-s1.xml"/>
<xi:include href="power-fpu-valgrind-s1.xml"/>
<xi:include href="power64-core2-valgrind-s1.xml"/>
<xi:include href="power64-linux-valgrind-s1.xml"/>
<xi:include href="power-altivec-valgrind-s1.xml"/>
<xi:include href="power-vsx-valgrind-s1.xml"/>
<xi:include href="power64-core-valgrind-s2.xml"/>
<xi:include href="power-fpu-valgrind-s2.xml"/>
<xi:include href="power64-core2-valgrind-s2.xml"/>
<xi:include href="power64-linux-valgrind-s2.xml"/>
<xi:include href="power-altivec-valgrind-s2.xml"/>
<xi:include href="power-vsx-valgrind-s2.xml"/>
</target>

View File

@ -16,4 +16,5 @@
<xi:include href="power-fpu.xml"/>
<xi:include href="power64-linux.xml"/>
<xi:include href="power-altivec.xml"/>
<xi:include href="power-vsx.xml"/>
</target>

View File

@ -35,6 +35,51 @@
#include "libvex_guest_ppc64.h"
/* The PPC64 register layout with vs register support (Power 7 and beyond)
consists of 64 VSR registers of size 128-bits. The 32 floating point
registers fp map to the upper 64-bits of vsr[0] to vsr[31]. The 32
vr[0] to vr[31] registers of size 128-bits map to vsr[31] to vsr[63]. The
lower 64-bits of the vsr[0] to vsr[31] registers are in the pseudo
registers vs[0]h to vs[31]h registers. These pseudo registers get printed
by GDB but there are no instructions that directly access these registers.
When GDB prints the vsr[0] to vsr[31] registers it combines the contents
of the floating point registers fp[0] to fp[31] and its corresponding
vs[0]h to vs[31]h registers to display the VSR contents. The vsr[32]
to vsr[63] contents are the same as the the vr[0] to vr[31] contents.
GDB also prints fp[32] to fp[63]. These are simply the upper 64 bits of
vsr[32] to vsr[63] however, these are not "real" floating point registers
as none of the floating point instructions can access these registers.
Register map.
MSB IBM bit numbering LSB
0 63 64 127
vsr[0] | fp[0] | vs[0]h |
vsr[1] | fp[1] | vs[1]h |
vsr[2] | fp[2] | vs[2]h |
...
vsr[31] | fp[31] | vs[31]h |
vsr[32] | vr[0] |
vsr[33] | vr[1] |
...
vsr[63] | vr[31] |
Note, not shown above are the fake fp[32] to fp[63] that GDB prints
Valgrind has two shadow registers for each real register denoted with
the suffix s1 and s2. When printing the contents of the shadow registers,
GDB does not explicitly print the shadow registers vsr[0] to vsr[63]. GDB
prints the shadow register contents of the 32 floating point registers as
fp[0]s1 to fp[31]s1 and fp[0]s2 to fp[31]s2. The shadow register contents
of vs[0]hs1 to vs[31]hs1 and vs[0]hs2 to vs[31]hs2 are also printed. The
user needs to construct the vsr[i]s1 shadow register contents by looking
at fp[i]s1 for the upper 64-bits and vs[i]hs1 for the lower 64-bits. The
vsr[i]s2 shadow register contents are constructed similarly.
GDB prints the 128-bit shadow register contents of the 32 vr registers as
vr[0]s1 to vr[31]s1 and vr[0]s2 to vr[31]s2. These are also the value of the
VSR shadow registers vsr[32]s1 to vsr[63]s1 and vsr[32]s2 to vsr[63]s2. */
static struct reg regs[] = {
{ "r0", 0, 64 },
{ "r1", 64, 64 },
@ -143,7 +188,40 @@ static struct reg regs[] = {
{ "vr31", 8544, 128 },
{ "vscr", 8672, 32 },
{ "vrsave", 8704, 32 },
{ "vs0h", 8736, 64 },
{ "vs1h", 8800, 64 },
{ "vs2h", 8864, 64 },
{ "vs3h", 8928, 64 },
{ "vs4h", 8992, 64 },
{ "vs5h", 9056, 64 },
{ "vs6h", 9120, 64 },
{ "vs7h", 9184, 64 },
{ "vs8h", 9248, 64 },
{ "vs9h", 9312, 64 },
{ "vs10h", 9376, 64 },
{ "vs11h", 9440, 64 },
{ "vs12h", 9504, 64 },
{ "vs13h", 9568, 64 },
{ "vs14h", 9632, 64 },
{ "vs15h", 9696, 64 },
{ "vs16h", 9760, 64 },
{ "vs17h", 9824, 64 },
{ "vs18h", 9888, 64 },
{ "vs19h", 9952, 64 },
{ "vs20h", 10016, 64 },
{ "vs21h", 10080, 64 },
{ "vs22h", 10144, 64 },
{ "vs23h", 10208, 64 },
{ "vs24h", 10272, 64 },
{ "vs25h", 10336, 64 },
{ "vs26h", 10400, 64 },
{ "vs27h", 10464, 64 },
{ "vs28h", 10528, 64 },
{ "vs29h", 10592, 64 },
{ "vs30h", 10656, 64 },
{ "vs31h", 10720, 64 },
};
static const char *expedite_regs[] = { "r1", "pc", 0 };
#define num_regs (sizeof (regs) / sizeof (regs[0]))
@ -178,11 +256,42 @@ void transfer_register (ThreadId tid, int abs_regno, void * buf,
ThreadState* tst = VG_(get_ThreadState)(tid);
int set = abs_regno / num_regs;
int regno = abs_regno % num_regs;
int low_offset, high_offset;
*mod = False;
VexGuestPPC64State* ppc64 = (VexGuestPPC64State*) get_arch (set, tst);
switch (regno) {
#if defined (VG_LITTLEENDIAN)
/* Fetch the 64-bits for the VR registers (VSR[32] to VSR[63] stored as
* Little Endian. The 128-bit value is stored as an array of four 32-bit
* values. The lower 32-bits are in element 0 in Little Endian format.
*/
low_offset = 0;
/* Fetch the upper 64-bits for the floating point register stored as
* Little Endian. The 128-bit value is stored as an array of four 32-bit
* values. The upper 32-bits are in element 3 in Little Endian format.
*/
high_offset = 2;
#elif defined (VG_BIGENDIAN)
/* Fetch the 64-bits for the VR registers (VSR[32] to VSR[63] stored as
* Little Endian. The 128-bit value is stored as an array of four 32-bit
* values. The lower 32-bits are in element 3 in Big Endian format.
*/
low_offset = 2;
/* Fetch the upper 64-bits for the floating point register stored as
* Little Endian. The 128-bit value is stored as an array of four 32-bit
* values. The upper 32-bits are in element 0 in Big Endian format.
*/
high_offset = 0;
#else
# error "Unknown endianness"
#endif
switch (regno) {
// numbers here have to match the order of regs above
// Attention: gdb order does not match valgrind order.
case 0: VG_(transfer) (&ppc64->guest_GPR0, buf, dir, size, mod); break;
@ -217,44 +326,46 @@ void transfer_register (ThreadId tid, int abs_regno, void * buf,
case 29: VG_(transfer) (&ppc64->guest_GPR29, buf, dir, size, mod); break;
case 30: VG_(transfer) (&ppc64->guest_GPR30, buf, dir, size, mod); break;
case 31: VG_(transfer) (&ppc64->guest_GPR31, buf, dir, size, mod); break;
case 32: VG_(transfer) (&ppc64->guest_VSR0, buf, dir, size, mod); break;
case 33: VG_(transfer) (&ppc64->guest_VSR1, buf, dir, size, mod); break;
case 34: VG_(transfer) (&ppc64->guest_VSR2, buf, dir, size, mod); break;
case 35: VG_(transfer) (&ppc64->guest_VSR3, buf, dir, size, mod); break;
case 36: VG_(transfer) (&ppc64->guest_VSR4, buf, dir, size, mod); break;
case 37: VG_(transfer) (&ppc64->guest_VSR5, buf, dir, size, mod); break;
case 38: VG_(transfer) (&ppc64->guest_VSR6, buf, dir, size, mod); break;
case 39: VG_(transfer) (&ppc64->guest_VSR7, buf, dir, size, mod); break;
case 40: VG_(transfer) (&ppc64->guest_VSR8, buf, dir, size, mod); break;
case 41: VG_(transfer) (&ppc64->guest_VSR9, buf, dir, size, mod); break;
case 42: VG_(transfer) (&ppc64->guest_VSR10, buf, dir, size, mod); break;
case 43: VG_(transfer) (&ppc64->guest_VSR11, buf, dir, size, mod); break;
case 44: VG_(transfer) (&ppc64->guest_VSR12, buf, dir, size, mod); break;
case 45: VG_(transfer) (&ppc64->guest_VSR13, buf, dir, size, mod); break;
case 46: VG_(transfer) (&ppc64->guest_VSR14, buf, dir, size, mod); break;
case 47: VG_(transfer) (&ppc64->guest_VSR15, buf, dir, size, mod); break;
case 48: VG_(transfer) (&ppc64->guest_VSR16, buf, dir, size, mod); break;
case 49: VG_(transfer) (&ppc64->guest_VSR17, buf, dir, size, mod); break;
case 50: VG_(transfer) (&ppc64->guest_VSR18, buf, dir, size, mod); break;
case 51: VG_(transfer) (&ppc64->guest_VSR19, buf, dir, size, mod); break;
case 52: VG_(transfer) (&ppc64->guest_VSR20, buf, dir, size, mod); break;
case 53: VG_(transfer) (&ppc64->guest_VSR21, buf, dir, size, mod); break;
case 54: VG_(transfer) (&ppc64->guest_VSR22, buf, dir, size, mod); break;
case 55: VG_(transfer) (&ppc64->guest_VSR23, buf, dir, size, mod); break;
case 56: VG_(transfer) (&ppc64->guest_VSR24, buf, dir, size, mod); break;
case 57: VG_(transfer) (&ppc64->guest_VSR25, buf, dir, size, mod); break;
case 58: VG_(transfer) (&ppc64->guest_VSR26, buf, dir, size, mod); break;
case 59: VG_(transfer) (&ppc64->guest_VSR27, buf, dir, size, mod); break;
case 60: VG_(transfer) (&ppc64->guest_VSR28, buf, dir, size, mod); break;
case 61: VG_(transfer) (&ppc64->guest_VSR29, buf, dir, size, mod); break;
case 62: VG_(transfer) (&ppc64->guest_VSR30, buf, dir, size, mod); break;
case 63: VG_(transfer) (&ppc64->guest_VSR31, buf, dir, size, mod); break;
case 32: VG_(transfer) (&ppc64->guest_VSR0[high_offset], buf, dir, size, mod); break;
case 33: VG_(transfer) (&ppc64->guest_VSR1[high_offset], buf, dir, size, mod); break;
case 34: VG_(transfer) (&ppc64->guest_VSR2[high_offset], buf, dir, size, mod); break;
case 35: VG_(transfer) (&ppc64->guest_VSR3[high_offset], buf, dir, size, mod); break;
case 36: VG_(transfer) (&ppc64->guest_VSR4[high_offset], buf, dir, size, mod); break;
case 37: VG_(transfer) (&ppc64->guest_VSR5[high_offset], buf, dir, size, mod); break;
case 38: VG_(transfer) (&ppc64->guest_VSR6[high_offset], buf, dir, size, mod); break;
case 39: VG_(transfer) (&ppc64->guest_VSR7[high_offset], buf, dir, size, mod); break;
case 40: VG_(transfer) (&ppc64->guest_VSR8[high_offset], buf, dir, size, mod); break;
case 41: VG_(transfer) (&ppc64->guest_VSR9[high_offset], buf, dir, size, mod); break;
case 42: VG_(transfer) (&ppc64->guest_VSR10[high_offset], buf, dir, size, mod); break;
case 43: VG_(transfer) (&ppc64->guest_VSR11[high_offset], buf, dir, size, mod); break;
case 44: VG_(transfer) (&ppc64->guest_VSR12[high_offset], buf, dir, size, mod); break;
case 45: VG_(transfer) (&ppc64->guest_VSR13[high_offset], buf, dir, size, mod); break;
case 46: VG_(transfer) (&ppc64->guest_VSR14[high_offset], buf, dir, size, mod); break;
case 47: VG_(transfer) (&ppc64->guest_VSR15[high_offset], buf, dir, size, mod); break;
case 48: VG_(transfer) (&ppc64->guest_VSR16[high_offset], buf, dir, size, mod); break;
case 49: VG_(transfer) (&ppc64->guest_VSR17[high_offset], buf, dir, size, mod); break;
case 50: VG_(transfer) (&ppc64->guest_VSR18[high_offset], buf, dir, size, mod); break;
case 51: VG_(transfer) (&ppc64->guest_VSR19[high_offset], buf, dir, size, mod); break;
case 52: VG_(transfer) (&ppc64->guest_VSR20[high_offset], buf, dir, size, mod); break;
case 53: VG_(transfer) (&ppc64->guest_VSR21[high_offset], buf, dir, size, mod); break;
case 54: VG_(transfer) (&ppc64->guest_VSR22[high_offset], buf, dir, size, mod); break;
case 55: VG_(transfer) (&ppc64->guest_VSR23[high_offset], buf, dir, size, mod); break;
case 56: VG_(transfer) (&ppc64->guest_VSR24[high_offset], buf, dir, size, mod); break;
case 57: VG_(transfer) (&ppc64->guest_VSR25[high_offset], buf, dir, size, mod); break;
case 58: VG_(transfer) (&ppc64->guest_VSR26[high_offset], buf, dir, size, mod); break;
case 59: VG_(transfer) (&ppc64->guest_VSR27[high_offset], buf, dir, size, mod); break;
case 60: VG_(transfer) (&ppc64->guest_VSR28[high_offset], buf, dir, size, mod); break;
case 61: VG_(transfer) (&ppc64->guest_VSR29[high_offset], buf, dir, size, mod); break;
case 62: VG_(transfer) (&ppc64->guest_VSR30[high_offset], buf, dir, size, mod); break;
case 63: VG_(transfer) (&ppc64->guest_VSR31[high_offset], buf, dir, size, mod); break;
case 64: VG_(transfer) (&ppc64->guest_CIA, buf, dir, size, mod); break;
case 65: *mod = False; break; // VEX does not model Machine State Register
case 66: {
UInt cr = LibVEX_GuestPPC64_get_CR (ppc64);
if (dir == valgrind_to_gdbserver) {
VG_(transfer) (&cr, buf, dir, size, mod);
VG_(transfer) (&cr, buf, dir, size, mod);
} else {
UInt newcr;
VG_(transfer) (&newcr, buf, dir, size, mod);
@ -280,40 +391,79 @@ void transfer_register (ThreadId tid, int abs_regno, void * buf,
case 70: VG_(transfer) (&ppc64->guest_FPROUND, buf, dir, size, mod); break;
case 71: *mod = False; break; // GDBTD???? VEX { "orig_r3", 4448, 64 },
case 72: *mod = False; break; // GDBTD???? VEX { "trap", 4512, 64 },
case 73: VG_(transfer) (&ppc64->guest_VSR32, buf, dir, size, mod); break;
case 74: VG_(transfer) (&ppc64->guest_VSR33, buf, dir, size, mod); break;
case 75: VG_(transfer) (&ppc64->guest_VSR34, buf, dir, size, mod); break;
case 76: VG_(transfer) (&ppc64->guest_VSR35, buf, dir, size, mod); break;
case 77: VG_(transfer) (&ppc64->guest_VSR36, buf, dir, size, mod); break;
case 78: VG_(transfer) (&ppc64->guest_VSR37, buf, dir, size, mod); break;
case 79: VG_(transfer) (&ppc64->guest_VSR38, buf, dir, size, mod); break;
case 80: VG_(transfer) (&ppc64->guest_VSR39, buf, dir, size, mod); break;
case 81: VG_(transfer) (&ppc64->guest_VSR40, buf, dir, size, mod); break;
case 82: VG_(transfer) (&ppc64->guest_VSR41, buf, dir, size, mod); break;
case 83: VG_(transfer) (&ppc64->guest_VSR42, buf, dir, size, mod); break;
case 84: VG_(transfer) (&ppc64->guest_VSR43, buf, dir, size, mod); break;
case 85: VG_(transfer) (&ppc64->guest_VSR44, buf, dir, size, mod); break;
case 86: VG_(transfer) (&ppc64->guest_VSR45, buf, dir, size, mod); break;
case 87: VG_(transfer) (&ppc64->guest_VSR46, buf, dir, size, mod); break;
case 88: VG_(transfer) (&ppc64->guest_VSR47, buf, dir, size, mod); break;
case 89: VG_(transfer) (&ppc64->guest_VSR48, buf, dir, size, mod); break;
case 90: VG_(transfer) (&ppc64->guest_VSR49, buf, dir, size, mod); break;
case 91: VG_(transfer) (&ppc64->guest_VSR50, buf, dir, size, mod); break;
case 92: VG_(transfer) (&ppc64->guest_VSR51, buf, dir, size, mod); break;
case 93: VG_(transfer) (&ppc64->guest_VSR52, buf, dir, size, mod); break;
case 94: VG_(transfer) (&ppc64->guest_VSR53, buf, dir, size, mod); break;
case 95: VG_(transfer) (&ppc64->guest_VSR54, buf, dir, size, mod); break;
case 96: VG_(transfer) (&ppc64->guest_VSR55, buf, dir, size, mod); break;
case 97: VG_(transfer) (&ppc64->guest_VSR56, buf, dir, size, mod); break;
case 98: VG_(transfer) (&ppc64->guest_VSR57, buf, dir, size, mod); break;
case 99: VG_(transfer) (&ppc64->guest_VSR58, buf, dir, size, mod); break;
case 100: VG_(transfer) (&ppc64->guest_VSR59, buf, dir, size, mod); break;
case 101: VG_(transfer) (&ppc64->guest_VSR60, buf, dir, size, mod); break;
case 102: VG_(transfer) (&ppc64->guest_VSR61, buf, dir, size, mod); break;
case 103: VG_(transfer) (&ppc64->guest_VSR62, buf, dir, size, mod); break;
case 104: VG_(transfer) (&ppc64->guest_VSR63, buf, dir, size, mod); break;
case 105: VG_(transfer) (&ppc64->guest_VSCR, buf, dir, size, mod); break;
case 73: VG_(transfer) (&ppc64->guest_VSR32, buf, dir, size, mod); break;
case 74: VG_(transfer) (&ppc64->guest_VSR33, buf, dir, size, mod); break;
case 75: VG_(transfer) (&ppc64->guest_VSR34, buf, dir, size, mod); break;
case 76: VG_(transfer) (&ppc64->guest_VSR35, buf, dir, size, mod); break;
case 77: VG_(transfer) (&ppc64->guest_VSR36, buf, dir, size, mod); break;
case 78: VG_(transfer) (&ppc64->guest_VSR37, buf, dir, size, mod); break;
case 79: VG_(transfer) (&ppc64->guest_VSR38, buf, dir, size, mod); break;
case 80: VG_(transfer) (&ppc64->guest_VSR39, buf, dir, size, mod); break;
case 81: VG_(transfer) (&ppc64->guest_VSR40, buf, dir, size, mod); break;
case 82: VG_(transfer) (&ppc64->guest_VSR40, buf, dir, size, mod); break;
case 83: VG_(transfer) (&ppc64->guest_VSR42, buf, dir, size, mod); break;
case 84: VG_(transfer) (&ppc64->guest_VSR43, buf, dir, size, mod); break;
case 85: VG_(transfer) (&ppc64->guest_VSR44, buf, dir, size, mod); break;
case 86: VG_(transfer) (&ppc64->guest_VSR45, buf, dir, size, mod); break;
case 87: VG_(transfer) (&ppc64->guest_VSR46, buf, dir, size, mod); break;
case 88: VG_(transfer) (&ppc64->guest_VSR47, buf, dir, size, mod); break;
case 89: VG_(transfer) (&ppc64->guest_VSR48, buf, dir, size, mod); break;
case 90: VG_(transfer) (&ppc64->guest_VSR49, buf, dir, size, mod); break;
case 91: VG_(transfer) (&ppc64->guest_VSR50, buf, dir, size, mod); break;
case 92: VG_(transfer) (&ppc64->guest_VSR51, buf, dir, size, mod); break;
case 93: VG_(transfer) (&ppc64->guest_VSR52, buf, dir, size, mod); break;
case 94: VG_(transfer) (&ppc64->guest_VSR53, buf, dir, size, mod); break;
case 95: VG_(transfer) (&ppc64->guest_VSR54, buf, dir, size, mod); break;
case 96: VG_(transfer) (&ppc64->guest_VSR55, buf, dir, size, mod); break;
case 97: VG_(transfer) (&ppc64->guest_VSR56, buf, dir, size, mod); break;
case 98: VG_(transfer) (&ppc64->guest_VSR57, buf, dir, size, mod); break;
case 99: VG_(transfer) (&ppc64->guest_VSR58, buf, dir, size, mod); break;
case 100: VG_(transfer) (&ppc64->guest_VSR59, buf, dir, size, mod); break;
case 101: VG_(transfer) (&ppc64->guest_VSR60, buf, dir, size, mod); break;
case 102: VG_(transfer) (&ppc64->guest_VSR61, buf, dir, size, mod); break;
case 103: VG_(transfer) (&ppc64->guest_VSR62, buf, dir, size, mod); break;
case 104: VG_(transfer) (&ppc64->guest_VSR63, buf, dir, size, mod); break;
case 105: VG_(transfer) (&ppc64->guest_VSCR, buf, dir, size, mod); break;
case 106: VG_(transfer) (&ppc64->guest_VRSAVE, buf, dir, size, mod); break;
/* Fetch the lower 64-bits of the VSR registers. GDB will combine the
* lower 64-bits of the VSR with the upper 64-bits it got fetching the
* corresponding floating point register to display the full 128-bit
* VSR value.
*/
case 107: VG_(transfer) (&ppc64->guest_VSR0[low_offset], buf, dir, size, mod); break;
case 108: VG_(transfer) (&ppc64->guest_VSR1[low_offset], buf, dir, size, mod); break;
case 109: VG_(transfer) (&ppc64->guest_VSR2[low_offset], buf, dir, size, mod); break;
case 110: VG_(transfer) (&ppc64->guest_VSR3[low_offset], buf, dir, size, mod); break;
case 111: VG_(transfer) (&ppc64->guest_VSR4[low_offset], buf, dir, size, mod); break;
case 112: VG_(transfer) (&ppc64->guest_VSR5[low_offset], buf, dir, size, mod); break;
case 113: VG_(transfer) (&ppc64->guest_VSR6[low_offset], buf, dir, size, mod); break;
case 114: VG_(transfer) (&ppc64->guest_VSR7[low_offset], buf, dir, size, mod); break;
case 115: VG_(transfer) (&ppc64->guest_VSR8[low_offset], buf, dir, size, mod); break;
case 116: VG_(transfer) (&ppc64->guest_VSR9[low_offset], buf, dir, size, mod); break;
case 117: VG_(transfer) (&ppc64->guest_VSR10[low_offset], buf, dir, size, mod); break;
case 118: VG_(transfer) (&ppc64->guest_VSR11[low_offset], buf, dir, size, mod); break;
case 119: VG_(transfer) (&ppc64->guest_VSR12[low_offset], buf, dir, size, mod); break;
case 120: VG_(transfer) (&ppc64->guest_VSR13[low_offset], buf, dir, size, mod); break;
case 121: VG_(transfer) (&ppc64->guest_VSR14[low_offset], buf, dir, size, mod); break;
case 122: VG_(transfer) (&ppc64->guest_VSR15[low_offset], buf, dir, size, mod); break;
case 123: VG_(transfer) (&ppc64->guest_VSR16[low_offset], buf, dir, size, mod); break;
case 124: VG_(transfer) (&ppc64->guest_VSR17[low_offset], buf, dir, size, mod); break;
case 125: VG_(transfer) (&ppc64->guest_VSR18[low_offset], buf, dir, size, mod); break;
case 126: VG_(transfer) (&ppc64->guest_VSR19[low_offset], buf, dir, size, mod); break;
case 127: VG_(transfer) (&ppc64->guest_VSR20[low_offset], buf, dir, size, mod); break;
case 128: VG_(transfer) (&ppc64->guest_VSR21[low_offset], buf, dir, size, mod); break;
case 129: VG_(transfer) (&ppc64->guest_VSR22[low_offset], buf, dir, size, mod); break;
case 130: VG_(transfer) (&ppc64->guest_VSR23[low_offset], buf, dir, size, mod); break;
case 131: VG_(transfer) (&ppc64->guest_VSR24[low_offset], buf, dir, size, mod); break;
case 132: VG_(transfer) (&ppc64->guest_VSR25[low_offset], buf, dir, size, mod); break;
case 133: VG_(transfer) (&ppc64->guest_VSR26[low_offset], buf, dir, size, mod); break;
case 134: VG_(transfer) (&ppc64->guest_VSR27[low_offset], buf, dir, size, mod); break;
case 135: VG_(transfer) (&ppc64->guest_VSR28[low_offset], buf, dir, size, mod); break;
case 136: VG_(transfer) (&ppc64->guest_VSR29[low_offset], buf, dir, size, mod); break;
case 137: VG_(transfer) (&ppc64->guest_VSR30[low_offset], buf, dir, size, mod); break;
case 138: VG_(transfer) (&ppc64->guest_VSR31[low_offset], buf, dir, size, mod); break;
default: vg_assert(0);
}
}
@ -321,6 +471,14 @@ void transfer_register (ThreadId tid, int abs_regno, void * buf,
static
const char* target_xml (Bool shadow_mode)
{
/* NOTE, the current powerpc-altivec64l*.xml files includes the vsx
* registers. Power 6 and earlier power processors do not support the
* vsx registers. GDB has a bug in that it is only checking for ptrace
* support rather then checking the actual HW feature. Hence GDB on
* power 6 prints vsx registers that do not exist. Valgrind GDB support
* also has to include the vsx register definitions to be consistent with
* GDB.
*/
if (shadow_mode) {
return "powerpc-altivec64l-valgrind.xml";
} else {