diff --git a/1/P11.png b/1/P11.png new file mode 100644 index 0000000..8dc2c9d Binary files /dev/null and b/1/P11.png differ diff --git a/1/P12.png b/1/P12.png new file mode 100644 index 0000000..f987190 Binary files /dev/null and b/1/P12.png differ diff --git a/1/script.R b/1/script.R index 068efec..0ae2e9c 100755 --- a/1/script.R +++ b/1/script.R @@ -9,27 +9,27 @@ library("ggplot2") df <- read_xlsx("econ.xlsx") -# Filter for years >= 1971 -df <- df[df$tempo >= "1971/01/01", ] +# Filter for years >= 1976 +df <- df[df$tempo >= "1976/01/01", ] -# Create a new data frame with adjusted `ddesemp` and `tpp` columns +# Create a new data frame with adjusted `ddesemp` and `pop` columns ddesemp_mean <- mean(df$ddesemp) ddesemp_sd <- sd(df$ddesemp) -tpp_mean <- mean(df$tpp) -tpp_sd <- sd(df$tpp) +pop_mean <- mean(df$pop) +pop_sd <- sd(df$pop) df_adjusted <- data.frame( tempo = df[, c("tempo")], ddesemp = lapply(df[, c("ddesemp")], function(ddesemp) (ddesemp - ddesemp_mean) / ddesemp_sd), - tpp = lapply(df[, c("tpp")], function(tpp) (tpp - tpp_mean) / tpp_sd) + pop = lapply(df[, c("pop")], function(pop) (pop - pop_mean) / pop_sd) ) # Then plot them and save the output plot <- ggplot(df_adjusted, aes(x = tempo)) + geom_line(aes(y = ddesemp, color = "ddesemp")) + - geom_line(aes(y = tpp, color = "tpp")) + + geom_line(aes(y = pop, color = "pop")) + xlab("Tempo") + ylab("") + scale_color_manual(values = c("red", "blue")) +