diff --git a/typst/exercises/4.typ b/typst/exercises/4.typ index d1c5e97..eaf4d65 100644 --- a/typst/exercises/4.typ +++ b/typst/exercises/4.typ @@ -18,7 +18,15 @@ $ pi_0 + pi_1 + pi_2 = 1 $ #indent_par[Calling $P$ the matrix $mat(p_00, p_01, p_02; p_10, p_11, p_12; p_20, p_21, p_22)$, the 3 first balance equations can be expressed as the following equation 5:] -$ P^T dot mat(sum_(j) p_0j, 0, 0; 0, sum_(j) p_1j, 0; 0, 0, sum_(j) p_2j;) = 0 $ +$ + P^T dot + mat( + sum_(j) p_(0j), 0, 0; + 0, sum_(j) p_(1j), 0; + 0, 0, sum_(j) p_(2j); + ) + = 0 +$ #pagebreak() diff --git a/typst/exercises/5.typ b/typst/exercises/5.typ index f97a224..bb01387 100644 --- a/typst/exercises/5.typ +++ b/typst/exercises/5.typ @@ -18,7 +18,15 @@ $ pi_0 + pi_1 + pi_2 = 1 $ #indent_par[Calling $P$ the matrix $mat(λ_00, λ_01, λ_02; λ_10, λ_11, λ_12; λ_20, λ_21, λ_22)$, the 3 first balance equations can be expressed as the following equation 10:] -$ P^T dot mat(sum_(j) λ_0j, 0, 0; 0, sum_(j) λ_1j, 0; 0, 0, sum_(j) λ_2j;) = 0 $ +$ + P^T dot + mat( + sum_(j) λ_(0j), 0, 0; + 0, sum_(j) λ_(1j), 0; + 0, 0, sum_(j) λ_(2j); + ) + = 0 +$ #pagebreak()